Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2012, Volume 203, Issue 5, Pages 645–676
DOI: https://doi.org/10.1070/SM2012v203n05ABEH004238
(Mi sm7790)
 

This article is cited in 10 scientific papers (total in 10 papers)

Descent theory for semiorthogonal decompositions

A. Elaginab

a A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
b National Research University "Higher School of Economics"
References:
Abstract: We put forward a method for constructing semiorthogonal decompositions of the derived category of $G$-equivariant sheaves on a variety $X$ under the assumption that the derived category of sheaves on $X$ admits a semiorthogonal decomposition with components preserved by the action of the group $G$ on $X$. This method is used to obtain semiorthogonal decompositions of equivariant derived categories for projective bundles and blow-ups with a smooth centre as well as for varieties with a full exceptional collection preserved by the group action. Our main technical tool is descent theory for derived categories.
Bibliography: 12 titles.
Keywords: derived category, semiorthogonal decomposition, descent theory, algebraic variety.
Received: 15.09.2010 and 12.08.2011
Bibliographic databases:
Document Type: Article
UDC: 512.73
MSC: Primary 14F05, 18C15; Secondary 13D09, 18E30
Language: English
Original paper language: Russian
Citation: A. Elagin, “Descent theory for semiorthogonal decompositions”, Sb. Math., 203:5 (2012), 645–676
Citation in format AMSBIB
\Bibitem{Ela12}
\by A.~Elagin
\paper Descent theory for semiorthogonal decompositions
\jour Sb. Math.
\yr 2012
\vol 203
\issue 5
\pages 645--676
\mathnet{http://mi.mathnet.ru//eng/sm7790}
\crossref{https://doi.org/10.1070/SM2012v203n05ABEH004238}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2976858}
\zmath{https://zbmath.org/?q=an:06084149}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012SbMat.203..645E}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000306361100002}
\elib{https://elibrary.ru/item.asp?id=19066491}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84863896165}
Linking options:
  • https://www.mathnet.ru/eng/sm7790
  • https://doi.org/10.1070/SM2012v203n05ABEH004238
  • https://www.mathnet.ru/eng/sm/v203/i5/p33
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024