Loading [MathJax]/jax/output/CommonHTML/jax.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2012, Volume 203, Issue 9, Pages 1342–1356
DOI: https://doi.org/10.1070/SM2012v203n09ABEH004267
(Mi sm7776)
 

This article is cited in 9 scientific papers (total in 9 papers)

Automorphisms of semigroups of invertible matrices with nonnegative integer elements

P. P. Semenov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: Let Gn(Z) be the subsemigroup of GLn(Z) consisting of the matrices with nonnegative integer coefficients. In the paper, the automorphisms of this semigroup are described for n2.
Bibliography: 5 titles.
Keywords: matrices with nonnegative coefficients, automorphisms, integers.
Received: 02.08.2010 and 08.04.2012
Bibliographic databases:
Document Type: Article
UDC: 512.643+512.555
MSC: Primary 20M15; Secondary 20M10
Language: English
Original paper language: Russian
Citation: P. P. Semenov, “Automorphisms of semigroups of invertible matrices with nonnegative integer elements”, Sb. Math., 203:9 (2012), 1342–1356
Citation in format AMSBIB
\Bibitem{Sem12}
\by P.~P.~Semenov
\paper Automorphisms of semigroups of invertible matrices with nonnegative integer elements
\jour Sb. Math.
\yr 2012
\vol 203
\issue 9
\pages 1342--1356
\mathnet{http://mi.mathnet.ru/eng/sm7776}
\crossref{https://doi.org/10.1070/SM2012v203n09ABEH004267}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3024833}
\zmath{https://zbmath.org/?q=an:1259.20066}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000310980400006}
\elib{https://elibrary.ru/item.asp?id=19066590}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84869014482}
Linking options:
  • https://www.mathnet.ru/eng/sm7776
  • https://doi.org/10.1070/SM2012v203n09ABEH004267
  • https://www.mathnet.ru/eng/sm/v203/i9/p117
  • This publication is cited in the following 9 articles:
    1. E. Bunina, K. Sosov, “Endomorphisms of the semigroup of nonnegative invertible matrices of order two over commutative ordered rings”, J. Math. Sci., 269:4 (2023), 469–478  mathnet  crossref
    2. V. V. Nemiro, “Endomorphisms of semigroups of invertible nonnegative matrices over ordered associative rings”, Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 75:5 (2020), 181–187  mathnet  crossref  mathscinet  zmath  isi
    3. V. V. Nemiro, “The group of quotients of the semigroup of invertible nonnegative matrices over local rings”, J. Math. Sci., 257:6 (2021), 860–875  mathnet  crossref
    4. E. I. Bunina, A. V. Mikhalev, V. V. Nemiro, “Quotient groups of semigroups of invertible nonnegative matrices over skew fields”, Dokl. Math., 95:1 (2017), 12–14  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
    5. E. I. Bunina, A. V. Mikhalev, V. V. Nemiro, “Groups of quotients of semigroups of invertible nonnegative matrices over skewfields”, J. Math. Sci., 233:5 (2018), 640–645  mathnet  crossref
    6. O. I. Tsarkov, “Endomorphisms of the semigroup $G_2(R)$ over partially ordered commutative rings without zero divisors and with $1/2$”, J. Math. Sci., 201:4 (2014), 534–551  mathnet  crossref  mathscinet
    7. E. I. Bunina, V. V. Nemiro, “The group of fractions of the semigroup of invertible nonnegative matrices of order three over a field”, J. Math. Sci., 206:5 (2015), 474–485  mathnet  crossref  mathscinet
    8. O. I. Tsarkov, “Extension of endomorphisms of the subsemigroup $\mathrm{GE}^+_2(R)$ to endomorphisms of $\mathrm{GE}^+_2(R[x])$, where $R$ is a partially-ordered commutative ring without zero divisors”, J. Math. Sci., 206:6 (2015), 711–733  mathnet  crossref  mathscinet
    9. P. P. Semenov, “Endomorphisms of semigroups of invertible nonnegative matrices over ordered rings”, J. Math. Sci., 193:4 (2013), 591–600  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:418
    Russian version PDF:216
    English version PDF:32
    References:60
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025