Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2012, Volume 203, Issue 9, Pages 1357–1382
DOI: https://doi.org/10.1070/SM2012v203n09ABEH004268
(Mi sm8083)
 

This article is cited in 3 scientific papers (total in 3 papers)

Arrangements of codimension-one submanifolds

I. N. Shnurnikovab

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Laboratory of Discrete and Computational Geometry named after B. N. Delone of P. G. Demidov Yaroslavl State University
References:
Abstract: We study the number $f$ of connected components in the complement to a finite set (arrangement) of closed submanifolds of codimension 1 in a closed manifold $M$. In the case of arrangements of closed geodesics on an isohedral tetrahedron, we find all possible values for the number $f$ of connected components. We prove that the set of numbers that cannot be realized by the number $f$ of an arrangement of $n\geqslant 71$ projective planes in the three-dimensional real projective space is contained in the similar known set of numbers that are not realizable by arrangements of $n$ lines on the projective plane. For Riemannian surfaces $M$ we express the number $f$ via a regular neighbourhood of a union of immersed circles and the multiplicities of their intersection points. For $m$-dimensional Lobachevskiǐ space we find the set of all possible numbers $f$ for hyperplane arrangements.
Bibliography: 18 titles.
Keywords: hyperplane arrangements, closed geodesics, partition of a surface.
Received: 09.11.2011
Russian version:
Matematicheskii Sbornik, 2012, Volume 203, Number 9, Pages 133–160
DOI: https://doi.org/10.4213/sm8083
Bibliographic databases:
Document Type: Article
UDC: 514.113.5
MSC: 52C35
Language: English
Original paper language: Russian
Citation: I. N. Shnurnikov, “Arrangements of codimension-one submanifolds”, Mat. Sb., 203:9 (2012), 133–160; Sb. Math., 203:9 (2012), 1357–1382
Citation in format AMSBIB
\Bibitem{Shn12}
\by I.~N.~Shnurnikov
\paper Arrangements of codimension-one submanifolds
\jour Mat. Sb.
\yr 2012
\vol 203
\issue 9
\pages 133--160
\mathnet{http://mi.mathnet.ru/sm8083}
\crossref{https://doi.org/10.4213/sm8083}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3024834}
\zmath{https://zbmath.org/?q=an:1261.52017}
\elib{https://elibrary.ru/item.asp?id=19066591}
\transl
\jour Sb. Math.
\yr 2012
\vol 203
\issue 9
\pages 1357--1382
\crossref{https://doi.org/10.1070/SM2012v203n09ABEH004268}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000310980400007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84869013197}
Linking options:
  • https://www.mathnet.ru/eng/sm8083
  • https://doi.org/10.1070/SM2012v203n09ABEH004268
  • https://www.mathnet.ru/eng/sm/v203/i9/p133
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:691
    Russian version PDF:169
    English version PDF:10
    References:56
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024