Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2003, Volume 194, Issue 10, Pages 1543–1558
DOI: https://doi.org/10.1070/SM2003v194n10ABEH000776
(Mi sm776)
 

This article is cited in 14 scientific papers (total in 14 papers)

Method of Lyapunov functions in problems of stability of solutions of systems of differential equations with impulse action

A. O. Ignatyev

Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences
References:
Abstract: A system of ordinary differential equations with impulse action at fixed moments of time is considered. The system is assumed to have the zero solution. It is shown that the existence of a corresponding Lyapunov function is a necessary and sufficient condition for the uniform asymptotic stability of the zero solution. Restrictions on perturbations of the right-hand sides of differential equations and impulse actions are obtained under which the uniform asymptotic stability of the zero solution of the “unperturbed” system implies the uniform asymptotic stability of the zero solution of the “perturbed” system.
Received: 30.05.2002
Bibliographic databases:
UDC: 517.925.3
MSC: Primary 34A37; Secondary 34D05, 34D20
Language: English
Original paper language: Russian
Citation: A. O. Ignatyev, “Method of Lyapunov functions in problems of stability of solutions of systems of differential equations with impulse action”, Sb. Math., 194:10 (2003), 1543–1558
Citation in format AMSBIB
\Bibitem{Ign03}
\by A.~O.~Ignatyev
\paper Method of Lyapunov functions in problems of stability of solutions
of systems of differential equations with impulse action
\jour Sb. Math.
\yr 2003
\vol 194
\issue 10
\pages 1543--1558
\mathnet{http://mi.mathnet.ru//eng/sm776}
\crossref{https://doi.org/10.1070/SM2003v194n10ABEH000776}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2037518}
\zmath{https://zbmath.org/?q=an:1077.34054}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000188170200012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0742305830}
Linking options:
  • https://www.mathnet.ru/eng/sm776
  • https://doi.org/10.1070/SM2003v194n10ABEH000776
  • https://www.mathnet.ru/eng/sm/v194/i10/p117
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:843
    Russian version PDF:295
    English version PDF:16
    References:55
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024