Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2011, Volume 202, Issue 9, Pages 1303–1326
DOI: https://doi.org/10.1070/SM2011v202n09ABEH004188
(Mi sm7747)
 

This article is cited in 10 scientific papers (total in 10 papers)

Framed $4$-graphs: Euler tours, Gauss circuits and rotating circuits

D. P. Il'yutko

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We consider connected finite $4$-valent graphs with the structure of opposite edges at each vertex (framed $4$-graphs). For any of such graphs there exist Euler tours, in travelling along which at each vertex we turn from an edge to a nonopposite one (rotating circuits); and at the same time, it is not true that for any such graph there exists an Euler tour passing from an edge to the opposite one at each vertex (a Gauss circuit). The main result of the work is an explicit formula connecting the adjacency matrices of the Gauss circuit and an arbitrary Euler tour. This formula immediately gives us a criterion for the existence of a Gauss circuit on a given framed $4$-graph. It turns out that the results are also valid for all symmetric matrices (not just for matrices realisable by a chord diagram).
Bibliography: 24 titles.
Keywords: framed $4$-graphs, Euler tour, Gauss circuit, rotating circuit, adjacency matrix.
Received: 01.06.2010
Bibliographic databases:
Document Type: Article
UDC: 515.16+519.17
MSC: 05C38
Language: English
Original paper language: Russian
Citation: D. P. Il'yutko, “Framed $4$-graphs: Euler tours, Gauss circuits and rotating circuits”, Sb. Math., 202:9 (2011), 1303–1326
Citation in format AMSBIB
\Bibitem{Ily11}
\by D.~P.~Il'yutko
\paper Framed $4$-graphs: Euler tours, Gauss circuits and rotating circuits
\jour Sb. Math.
\yr 2011
\vol 202
\issue 9
\pages 1303--1326
\mathnet{http://mi.mathnet.ru//eng/sm7747}
\crossref{https://doi.org/10.1070/SM2011v202n09ABEH004188}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2884364}
\zmath{https://zbmath.org/?q=an:1237.05114}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.202.1303I}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000296920400003}
\elib{https://elibrary.ru/item.asp?id=19066304}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-81255149986}
Linking options:
  • https://www.mathnet.ru/eng/sm7747
  • https://doi.org/10.1070/SM2011v202n09ABEH004188
  • https://www.mathnet.ru/eng/sm/v202/i9/p53
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:625
    Russian version PDF:313
    English version PDF:10
    References:71
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024