Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2011, Volume 202, Issue 7, Pages 935–970
DOI: https://doi.org/10.1070/SM2011v202n07ABEH004172
(Mi sm7739)
 

This article is cited in 17 scientific papers (total in 17 papers)

Existence and uniqueness of the measure of maximal entropy for the Teichmüller flow on the moduli space of Abelian differentials

A. I. Bufetovab, B. M. Gurevichcd

a Steklov Mathematical Institute, Russian Academy of Sciences
b Department of Mathematics, Rice University, Houston, TX, USA
c M. V. Lomonosov Moscow State University
d A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
References:
Abstract: The main result of the paper is the statement that the ‘smooth’ measure of Masur and Veech is the unique measure of maximal entropy for the Teichmüller flow on the moduli space of Abelian differentials. The proof is based on the symbolic representation of the flow in Veech's space of zippered rectangles.
Bibliography: 29 titles.
Keywords: moduli space, Rauzy induction, symbolic dynamics, Markov shift, suspension flow.
Received: 13.05.2010 and 21.11.2010
Bibliographic databases:
Document Type: Article
UDC: 517.938
MSC: 28D20, 37A35, 37D, 37E35
Language: English
Original paper language: Russian
Citation: A. I. Bufetov, B. M. Gurevich, “Existence and uniqueness of the measure of maximal entropy for the Teichmüller flow on the moduli space of Abelian differentials”, Sb. Math., 202:7 (2011), 935–970
Citation in format AMSBIB
\Bibitem{BufGur11}
\by A.~I.~Bufetov, B.~M.~Gurevich
\paper Existence and uniqueness of the measure of maximal entropy for the Teichm\"uller flow on the moduli space of Abelian differentials
\jour Sb. Math.
\yr 2011
\vol 202
\issue 7
\pages 935--970
\mathnet{http://mi.mathnet.ru//eng/sm7739}
\crossref{https://doi.org/10.1070/SM2011v202n07ABEH004172}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2857792}
\zmath{https://zbmath.org/?q=an:1241.28011}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.202..935B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000294777500001}
\elib{https://elibrary.ru/item.asp?id=19066288}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80052771989}
Linking options:
  • https://www.mathnet.ru/eng/sm7739
  • https://doi.org/10.1070/SM2011v202n07ABEH004172
  • https://www.mathnet.ru/eng/sm/v202/i7/p3
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1049
    Russian version PDF:269
    English version PDF:19
    References:86
    First page:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024