Abstract:
The main result of the paper is the statement that the ‘smooth’ measure of Masur and Veech is the unique measure of maximal entropy for the Teichmüller flow on the moduli space of Abelian differentials. The proof is based on the symbolic representation of the flow in Veech's space of zippered rectangles.
Bibliography: 29 titles.
Citation:
A. I. Bufetov, B. M. Gurevich, “Existence and uniqueness of the measure of maximal entropy for the Teichmüller flow on the moduli space of Abelian differentials”, Sb. Math., 202:7 (2011), 935–970
\Bibitem{BufGur11}
\by A.~I.~Bufetov, B.~M.~Gurevich
\paper Existence and uniqueness of the measure of maximal entropy for the Teichm\"uller flow on the moduli space of Abelian differentials
\jour Sb. Math.
\yr 2011
\vol 202
\issue 7
\pages 935--970
\mathnet{http://mi.mathnet.ru/eng/sm7739}
\crossref{https://doi.org/10.1070/SM2011v202n07ABEH004172}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2857792}
\zmath{https://zbmath.org/?q=an:1241.28011}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.202..935B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000294777500001}
\elib{https://elibrary.ru/item.asp?id=19066288}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80052771989}
Linking options:
https://www.mathnet.ru/eng/sm7739
https://doi.org/10.1070/SM2011v202n07ABEH004172
https://www.mathnet.ru/eng/sm/v202/i7/p3
This publication is cited in the following 17 articles:
Buzzi J., Crovisier S., Sarig O., “Measures of Maximal Entropy For Surface Diffeomorphisms”, Ann. Math., 195:2 (2022), 421–508
Bufetov I A., Solomyak B., “Holder Regularity For the Spectrum of Translation Flows”, J. Ecole Polytech.-Math., 8 (2021), 279–310
Kucherenko T., Thompson D.J., “Measures of Maximal Entropy For Suspension Flows Over the Full Shift”, Math. Z., 294:1-2 (2020), 769–781
Iommi G., Riquelme F., Velozo A., “Entropy in the Cusp and Phase Transitions For Geodesic Flows”, Isr. J. Math., 225:2 (2018), 609–659
Eskin A., Mirzakhani M., “Invariant and Stationary Measures For the Sl(2, R) Action on Moduli Space”, Publ. Math. IHES, 2018, no. 127, 95–324
Climenhaga V., “Specification and Towers in Shift Spaces”, Commun. Math. Phys., 364:2 (2018), 441–504
Alexander I. Bufetov, Boris Solomyak, “The Hölder property for the spectrum of translation flows in genus two”, Israel J. Math., 223:1 (2018), 205–259
Aimino R., Nicol M., Todd M., “Recurrence Statistics For the Space of Interval Exchange Maps and the Teichmüller Flow on the Space of Translation Surfaces”, Ann. Inst. Henri Poincare-Probab. Stat., 53:3 (2017), 1371–1401
A. Avila, P. Hubert, A. Skripchenko, “Diffusion for chaotic plane sections of 3-periodic surfaces”, Invent. Math., 206:1 (2016), 109–146
B. M. Gurevich, “A lower estimate of the entropy of an automorphism and maximum entropy conditions for and invariant measure of a suspension flow over a Markov shift”, Dokl. Math., 91:2 (2015), 186–188
B. Gurevich, “On a measure with maximal entropy for a suspension flow over a countable alphabet Markov shift”, Eur. J. Math., 1:3 (2015), 545–559
Godofredo Iommi, Thomas Jordan, Mike Todd, “Recurrence and transience for suspension flows”, Isr. J. Math., 209:2 (2015), 547
G. Iommi, Th. Jordan, “Phase transitions for suspension flows”, Commun. Math. Phys., 320:2 (2013), 475–498
A. I. Bufetov, “Limit theorems for suspension flows over Vershik automorphisms”, Russian Math. Surveys, 68:5 (2013), 789–860
A. Bufetov, “Limit theorems for translation flows”, Ann. Math., 179:2 (2013), 431–499
U. Hamenstädt, “Bowen's construction for the Teichmüller flow”, J. Mod. Dyn., 7:4 (2013), 489–526
Climenhaga V., Thompson D.J., “Intrinsic ergodicity beyond specification: β-shifts, S-gap shifts, and their factors”, Israel J. Math., 192:2 (2012), 785–817