|
Эта публикация цитируется в 17 научных статьях (всего в 17 статьях)
Существование и единственность меры с максимальной энтропией для потока Тейхмюллера на пространстве модулей абелевых дифференциалов
А. И. Буфетовab, Б. М. Гуревичcd a Математический институт им. В. А. Стеклова РАН
b Department of Mathematics, Rice University, Houston, TX, USA
c Московский государственный университет им. М. В. Ломоносова
d Институт проблем передачи информации им. А. А. Харкевича РАН
Аннотация:
Основным результатом работы является утверждение, что “гладкая” мера Мазура и Вича является единственной мерой с максимальной энтропией для потока Тейхмюллера на пространстве модулей абелевых дифференциалов. Доказательство основано на символическом представлении потока в пространстве Вича зашнурованных
прямоугольников.
Библиография: 29 названий.
Ключевые слова:
пространство модулей, индукция Рази, символическая динамика, сдвиг Маркова, специальный поток.
Поступила в редакцию: 13.05.2010 и 21.11.2010
Образец цитирования:
А. И. Буфетов, Б. М. Гуревич, “Существование и единственность меры с максимальной энтропией для потока Тейхмюллера на пространстве модулей абелевых дифференциалов”, Матем. сб., 202:7 (2011), 3–42; A. I. Bufetov, B. M. Gurevich, “Existence and uniqueness of the measure of maximal entropy for the Teichmüller flow on the moduli space of Abelian differentials”, Sb. Math., 202:7 (2011), 935–970
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sm7739https://doi.org/10.4213/sm7739 https://www.mathnet.ru/rus/sm/v202/i7/p3
|
|