Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2012, Volume 203, Issue 2, Pages 196–223
DOI: https://doi.org/10.1070/SM2012v203n02ABEH004219
(Mi sm7723)
 

This article is cited in 28 scientific papers (total in 29 papers)

Parity and cobordism of free knots

V. O. Manturov

Peoples Friendship University of Russia
References:
Abstract: A simple invariant is constructed which obstructs a free knot to be truncated. In particular, this invariant provides an obstruction to the truncatedness of curves immersed in two-dimensional surfaces. A curve on an oriented two-dimensional surface $S_g$ is referred to as truncated (null-cobordant) if there exists a three-dimensional manifold $M$ with boundary $S_g$ and a smooth proper map of a two-disc to $M$ such that the image of the boundary of the disc coincides with the curve.
The problem of truncatedness for free knots is solved in this paper using the notion of parity recently introduced by the author.
Bibliography: 12 titles.
Keywords: knot, free knot, cobordism, parity, surface.
Received: 08.04.2010 and 25.09.2010
Bibliographic databases:
Document Type: Article
UDC: 515.162.8+519.17
MSC: 05C10
Language: English
Original paper language: Russian
Citation: V. O. Manturov, “Parity and cobordism of free knots”, Sb. Math., 203:2 (2012), 196–223
Citation in format AMSBIB
\Bibitem{Man12}
\by V.~O.~Manturov
\paper Parity and cobordism of free knots
\jour Sb. Math.
\yr 2012
\vol 203
\issue 2
\pages 196--223
\mathnet{http://mi.mathnet.ru//eng/sm7723}
\crossref{https://doi.org/10.1070/SM2012v203n02ABEH004219}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2962605}
\zmath{https://zbmath.org/?q=an:1259.05047}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012SbMat.203..196M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000302799500003}
\elib{https://elibrary.ru/item.asp?id=19066419}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84859595380}
Linking options:
  • https://www.mathnet.ru/eng/sm7723
  • https://doi.org/10.1070/SM2012v203n02ABEH004219
  • https://www.mathnet.ru/eng/sm/v203/i2/p45
  • This publication is cited in the following 29 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:764
    Russian version PDF:280
    English version PDF:30
    References:58
    First page:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024