Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2003, Volume 194, Issue 10, Pages 1427–1449
DOI: https://doi.org/10.1070/SM2003v194n10ABEH000771
(Mi sm771)
 

This article is cited in 2 scientific papers (total in 2 papers)

Two classes of spaces reflexive in the sense of Pontryagin

S. S. Akbarova, E. T. Shavgulidzeb

a All-Russian Institute for Scientific and Technical Information of Russian Academy of Sciences
b M. V. Lomonosov Moscow State University
References:
Abstract: The Pontryagin–van Kampen duality for locally compact Abelian groups can be generalized in two ways to wider classes of topological Abelian groups: in the first approach the dual group $X^\bullet$ is endowed with the topology of uniform convergence on compact subsets of $X$ and in the second, with the topology of uniform convergence on totally bounded subsets of $X$. The corresponding two classes of groups “reflexive in the sense of Pontryagin–van Kampen” are very wide and are so close to each other that it was unclear until recently whether they coincide or not. A series of counterexamples constructed in this paper shows that these classes do not coincide and also answer several other questions arising in this theory. The results of the paper can be interpreted as evidence that the second approach to the generalization of the Pontryagin duality is more natural.
Received: 09.01.2003
Bibliographic databases:
UDC: 519.4+513.88
MSC: Primary 22A05, 54H11; Secondary 46A03
Language: English
Original paper language: Russian
Citation: S. S. Akbarov, E. T. Shavgulidze, “Two classes of spaces reflexive in the sense of Pontryagin”, Sb. Math., 194:10 (2003), 1427–1449
Citation in format AMSBIB
\Bibitem{AkbSha03}
\by S.~S.~Akbarov, E.~T.~Shavgulidze
\paper Two classes of spaces reflexive in the~sense of Pontryagin
\jour Sb. Math.
\yr 2003
\vol 194
\issue 10
\pages 1427--1449
\mathnet{http://mi.mathnet.ru//eng/sm771}
\crossref{https://doi.org/10.1070/SM2003v194n10ABEH000771}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2037513}
\zmath{https://zbmath.org/?q=an:1076.22001}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000188170200007}
\elib{https://elibrary.ru/item.asp?id=13417626}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0742288541}
Linking options:
  • https://www.mathnet.ru/eng/sm771
  • https://doi.org/10.1070/SM2003v194n10ABEH000771
  • https://www.mathnet.ru/eng/sm/v194/i10/p3
    Erratum
    • Errata
      Mat. Sb., 2005, 196:4, 621
    This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1230
    Russian version PDF:269
    English version PDF:33
    References:89
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024