Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2011, Volume 202, Issue 4, Pages 583–619
DOI: https://doi.org/10.1070/SM2011v202n04ABEH004157
(Mi sm7704)
 

This article is cited in 12 scientific papers (total in 12 papers)

Variational stability of optimal control problems involving subdifferential operators

A. A. Tolstonogov

Institute of System Dynamics and Control Theory, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: This paper is concerned with the problem of minimizing an integral functional with control-nonconvex integrand over the class of solutions of a control system in a Hilbert space subject to a control constraint given by a phase-dependent multivalued map with closed nonconvex values. The integrand, the subdifferential operators, the perturbation term, the initial conditions and the control constraint all depend on a parameter. Along with this problem, the paper considers the problem of minimizing an integral functional with control-convexified integrand over the class of solutions of the original system, but now subject to a convexified control constraint. By a solution of a control system we mean a ‘trajectory-control’ pair. For each value of the parameter, the convexified problem is shown to have a solution, which is the limit of a minimizing sequence of the original problem, and the minimal value of the functional with the convexified integrand is a continuous function of the parameter. This property is commonly referred to as the variational stability of a minimization problem. An example of a control parabolic system with hysteresis and diffusion effects is considered.
Bibliography: 24 titles.
Keywords: Mosco convergence, nonconvex integrands, optimal control.
Received: 01.03.2010
Bibliographic databases:
Document Type: Article
UDC: 517.977.57
MSC: 49J53, 49K40
Language: English
Original paper language: Russian
Citation: A. A. Tolstonogov, “Variational stability of optimal control problems involving subdifferential operators”, Sb. Math., 202:4 (2011), 583–619
Citation in format AMSBIB
\Bibitem{Tol11}
\by A.~A.~Tolstonogov
\paper Variational stability of optimal control problems involving subdifferential operators
\jour Sb. Math.
\yr 2011
\vol 202
\issue 4
\pages 583--619
\mathnet{http://mi.mathnet.ru//eng/sm7704}
\crossref{https://doi.org/10.1070/SM2011v202n04ABEH004157}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2830239}
\zmath{https://zbmath.org/?q=an:1220.49012}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.202..583T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000292829300006}
\elib{https://elibrary.ru/item.asp?id=19066273}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959829118}
Linking options:
  • https://www.mathnet.ru/eng/sm7704
  • https://doi.org/10.1070/SM2011v202n04ABEH004157
  • https://www.mathnet.ru/eng/sm/v202/i4/p123
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025