Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2011, Volume 202, Issue 8, Pages 1183–1206
DOI: https://doi.org/10.1070/SM2011v202n08ABEH004183
(Mi sm7699)
 

This article is cited in 1 scientific paper (total in 1 paper)

The order of a homotopy invariant in the stable case

S. S. Podkorytov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
References:
Abstract: Let $X$, $Y$ be cell complexes, let $U$ be an Abelian group, and let $f\colon[X,Y]\to U$ be a homotopy invariant. By definition, the invariant $f$ has order at most $r$ if the characteristic function of the $r$th Cartesian power of the graph of a continuous map $a\colon X\to Y$ determines the value $f([a])$ $\mathbb{Z}$-linearly. It is proved that, in the stable case (that is, when $\operatorname{dim} X<2n-1$, and $Y$ is $(n-1)$-connected for some natural number $n$), for a finite cell complex $X$ the order of the invariant $f$ is equal to its degree with respect to the Curtis filtration of the group $[X,Y]$.
Bibliography: 9 titles.
Keywords: invariants of finite order, stable homotopy, Curtis filtration.
Received: 25.02.2010 and 11.01.2011
Bibliographic databases:
Document Type: Article
UDC: 515.142.424
MSC: 55Q05, 55P42
Language: English
Original paper language: Russian
Citation: S. S. Podkorytov, “The order of a homotopy invariant in the stable case”, Sb. Math., 202:8 (2011), 1183–1206
Citation in format AMSBIB
\Bibitem{Pod11}
\by S.~S.~Podkorytov
\paper The order of a~homotopy invariant in the stable case
\jour Sb. Math.
\yr 2011
\vol 202
\issue 8
\pages 1183--1206
\mathnet{http://mi.mathnet.ru//eng/sm7699}
\crossref{https://doi.org/10.1070/SM2011v202n08ABEH004183}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2866520}
\zmath{https://zbmath.org/?q=an:1238.55005}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.202.1183P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000296354800005}
\elib{https://elibrary.ru/item.asp?id=19066299}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80054680637}
Linking options:
  • https://www.mathnet.ru/eng/sm7699
  • https://doi.org/10.1070/SM2011v202n08ABEH004183
  • https://www.mathnet.ru/eng/sm/v202/i8/p95
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:384
    Russian version PDF:114
    English version PDF:12
    References:53
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024