Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2012, Volume 203, Issue 1, Pages 88–110
DOI: https://doi.org/10.1070/SM2012v203n01ABEH004215
(Mi sm7694)
 

This article is cited in 1 scientific paper (total in 1 paper)

Approximation of periodic functions in the classes $H_q^\Omega$ by linear methods

N. N. Pustovoitov

Moscow State Technical University "MAMI"
References:
Abstract: The following result is proved: if approximations in the norm of $L_\infty$ (of $H_1$) of functions in the classes $H_\infty^\Omega$ (in $H_1^\Omega$, respectively) by some linear operators have the same order of magnitude as the best approximations, then the set of norms of these operators is unbounded. Also Bernstein's and the Jackson-Nikol'skiǐ inequalities are proved for trigonometric polynomials with spectra in the sets $Q(N)$ (in $\varGamma(N,\Omega)$).
Bibliography: 15 titles.
Keywords: modulus of continuity, linear approximations, Bernstein's inequalities, Nikol'skiǐ's inequalities, functions of several variables.
Received: 18.02.2010 and 08.06.2011
Bibliographic databases:
Document Type: Article
UDC: 517.518.832
MSC: 41A35, 42B99
Language: English
Original paper language: Russian
Citation: N. N. Pustovoitov, “Approximation of periodic functions in the classes $H_q^\Omega$ by linear methods”, Sb. Math., 203:1 (2012), 88–110
Citation in format AMSBIB
\Bibitem{Pus12}
\by N.~N.~Pustovoitov
\paper Approximation of periodic functions in the classes~$H_q^\Omega$ by linear methods
\jour Sb. Math.
\yr 2012
\vol 203
\issue 1
\pages 88--110
\mathnet{http://mi.mathnet.ru//eng/sm7694}
\crossref{https://doi.org/10.1070/SM2012v203n01ABEH004215}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2933094}
\zmath{https://zbmath.org/?q=an:1248.41035}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012SbMat.203...88P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000301886900005}
\elib{https://elibrary.ru/item.asp?id=19066313}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84858760550}
Linking options:
  • https://www.mathnet.ru/eng/sm7694
  • https://doi.org/10.1070/SM2012v203n01ABEH004215
  • https://www.mathnet.ru/eng/sm/v203/i1/p91
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024