Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2010, Volume 201, Issue 11, Pages 1579–1598
DOI: https://doi.org/10.1070/SM2010v201n11ABEH004123
(Mi sm7691)
 

This article is cited in 31 scientific papers (total in 31 papers)

Chebyshev representation for rational functions

A. B. Bogatyrevab

a Moscow Institute of Physics and Technology
b Institute of Numerical Mathematics, Russian Academy of Sciences
References:
Abstract: An effective representation is obtained for rational functions all of whose critical points, apart from $g-1$, are simple and their corresponding critical values lie in a four-element set. Such functions are described using hyperelliptic curves of genus $g\geqslant1$. The classical Zolotarëv fraction arises in this framework for $g=1$.
Bibliography: 8 titles.
Keywords: rational approximation, Zolotarëv fraction, Riemann surfaces, Abelian integrals.
Received: 11.02.2010 and 19.05.2010
Russian version:
Matematicheskii Sbornik, 2010, Volume 201, Number 11, Pages 19–40
DOI: https://doi.org/10.4213/sm7691
Bibliographic databases:
Document Type: Article
UDC: 517.545
MSC: Primary 41A20; Secondary 30C15, 30F30, 65D20
Language: English
Original paper language: Russian
Citation: A. B. Bogatyrev, “Chebyshev representation for rational functions”, Mat. Sb., 201:11 (2010), 19–40; Sb. Math., 201:11 (2010), 1579–1598
Citation in format AMSBIB
\Bibitem{Bog10}
\by A.~B.~Bogatyrev
\paper Chebyshev representation for rational functions
\jour Mat. Sb.
\yr 2010
\vol 201
\issue 11
\pages 19--40
\mathnet{http://mi.mathnet.ru/sm7691}
\crossref{https://doi.org/10.4213/sm7691}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2768552}
\zmath{https://zbmath.org/?q=an:1213.41007}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010SbMat.201.1579B}
\elib{https://elibrary.ru/item.asp?id=19066171}
\transl
\jour Sb. Math.
\yr 2010
\vol 201
\issue 11
\pages 1579--1598
\crossref{https://doi.org/10.1070/SM2010v201n11ABEH004123}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000287230500002}
\elib{https://elibrary.ru/item.asp?id=16974386}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78751501219}
Linking options:
  • https://www.mathnet.ru/eng/sm7691
  • https://doi.org/10.1070/SM2010v201n11ABEH004123
  • https://www.mathnet.ru/eng/sm/v201/i11/p19
  • This publication is cited in the following 31 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:822
    Russian version PDF:336
    English version PDF:21
    References:75
    First page:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024