Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2013, Volume 204, Issue 4, Pages 463–484
DOI: https://doi.org/10.1070/SM2013v204n04ABEH004308
(Mi sm7675)
 

This article is cited in 2 scientific papers (total in 2 papers)

Vectors of a given Diophantine type. II

R. K. Akhunzhanov

Astrakhan State University
References:
Abstract: We prove the existence of a family of vectors with continuum many elements $\mathbf v\in\mathbb{R}^s$ admitting infinitely many simultaneous $(\varphi(p)/p^{1/s})(1+B\cdot\varphi^{1+1/s}(p))$-approximations and admitting no simultaneous $(\varphi(p)/p^{1/s})(1-B\cdot\varphi^{1+1/s}(p))$-approximation.
We prove that for $0<t\le T$ the closed interval $[t,t(1+16B\cdot t^{1+1/s})]$ contains an element of the $s$-dimensional Lagrange spectrum. Here $A$, $B$ and $T$ stand for some positive constants depending on the dimension $s$ only and $\varphi$ is a positive nonincreasing function of positive integer argument such that $\varphi(1)\le A$.
Bibliography: 5 titles.
Keywords: simultaneous Diophantine approximations, Lagrange spectrum, Euclidean space, simultaneous $\psi$-approximation.
Funding agency Grant number
Russian Foundation for Basic Research 12-01-00681-a
12-01-33080-мол_а_вед
Received: 24.12.2009 and 29.08.2012
Russian version:
Matematicheskii Sbornik, 2013, Volume 204, Number 4, Pages 3–24
DOI: https://doi.org/10.4213/sm7675
Bibliographic databases:
Document Type: Article
UDC: 511.36+511.9
MSC: Primary 11J06; Secondary 11J13, 41A38
Language: English
Original paper language: Russian
Citation: R. K. Akhunzhanov, “Vectors of a given Diophantine type. II”, Mat. Sb., 204:4 (2013), 3–24; Sb. Math., 204:4 (2013), 463–484
Citation in format AMSBIB
\Bibitem{Akh13}
\by R.~K.~Akhunzhanov
\paper Vectors of a~given Diophantine type.~II
\jour Mat. Sb.
\yr 2013
\vol 204
\issue 4
\pages 3--24
\mathnet{http://mi.mathnet.ru/sm7675}
\crossref{https://doi.org/10.4213/sm7675}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3097577}
\zmath{https://zbmath.org/?q=an:06190641}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013SbMat.204..463A}
\elib{https://elibrary.ru/item.asp?id=19066654}
\transl
\jour Sb. Math.
\yr 2013
\vol 204
\issue 4
\pages 463--484
\crossref{https://doi.org/10.1070/SM2013v204n04ABEH004308}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000320302700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84888333989}
Linking options:
  • https://www.mathnet.ru/eng/sm7675
  • https://doi.org/10.1070/SM2013v204n04ABEH004308
  • https://www.mathnet.ru/eng/sm/v204/i4/p3
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:613
    Russian version PDF:172
    English version PDF:12
    References:46
    First page:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024