Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2011, Volume 202, Issue 2, Pages 279–306
DOI: https://doi.org/10.1070/SM2011v202n02ABEH004146
(Mi sm7630)
 

This article is cited in 2 scientific papers (total in 2 papers)

Best approximation of functions in $L_p$ by polynomials on affine system

P. A. Terekhin

Saratov State University named after N. G. Chernyshevsky
References:
Abstract: Estimates of the best $L_p$-approximation of functions by polynomials in an affine system (system of dilations and translations), which are similar to well-known estimates due to Ul'yanov and Golubov for approximations in the Haar system, are obtained. An analogue of A. F. Timan and M. F. Timan's inequality is shown to hold under certain conditions on the generating function of the affine system; this analogue fails for the Haar system for $1<p<\infty$.
Bibliography: 10 titles.
Keywords: Haar system, system of dilations and translations, affine system, best approximation.
Received: 10.09.2009 and 19.06.2010
Bibliographic databases:
Document Type: Article
UDC: 517.518+517.982
MSC: 42C10, 41A10, 42C40
Language: English
Original paper language: Russian
Citation: P. A. Terekhin, “Best approximation of functions in $L_p$ by polynomials on affine system”, Sb. Math., 202:2 (2011), 279–306
Citation in format AMSBIB
\Bibitem{Ter11}
\by P.~A.~Terekhin
\paper Best approximation of functions in $L_p$ by polynomials on affine system
\jour Sb. Math.
\yr 2011
\vol 202
\issue 2
\pages 279--306
\mathnet{http://mi.mathnet.ru//eng/sm7630}
\crossref{https://doi.org/10.1070/SM2011v202n02ABEH004146}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2798789}
\zmath{https://zbmath.org/?q=an:1213.42101}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.202..279T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000290670700005}
\elib{https://elibrary.ru/item.asp?id=19066262}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79955674268}
Linking options:
  • https://www.mathnet.ru/eng/sm7630
  • https://doi.org/10.1070/SM2011v202n02ABEH004146
  • https://www.mathnet.ru/eng/sm/v202/i2/p131
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:730
    Russian version PDF:242
    English version PDF:12
    References:71
    First page:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024