|
Invariant hyperkähler structures on the cotangent bundles of
Hermitian symmetric spaces
I. V. Mykytyuk Lviv Polytechnic National University
Abstract:
Let $G/K$ be an irreducible Hermitian symmetric space of
compact type with standard homogeneous complex structure. Then the real symplectic manifold
$(T^*(G/K),\Omega)$ has the natural complex structure $J^-$. All $G$-invariant
Kéhler structures $(J,\Omega)$ on $G$-invariant subdomains of $T^*(G/K)$
anticommuting with $J^-$ are constructed. Each hypercomplex structure of this kind, equipped with a suitable metric, defines a hyperkéhler structure. As an application, a new proof of
the theorem of Harish-Chandra and Moore for Hermitian symmetric spaces is obtained.
Received: 11.03.2003
Citation:
I. V. Mykytyuk, “Invariant hyperkähler structures on the cotangent bundles of
Hermitian symmetric spaces”, Sb. Math., 194:8 (2003), 1225–1250
Linking options:
https://www.mathnet.ru/eng/sm763https://doi.org/10.1070/SM2003v194n08ABEH000763 https://www.mathnet.ru/eng/sm/v194/i8/p113
|
|