Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2003, Volume 194, Issue 8, Pages 1225–1250
DOI: https://doi.org/10.1070/SM2003v194n08ABEH000763
(Mi sm763)
 

Invariant hyperkähler structures on the cotangent bundles of Hermitian symmetric spaces

I. V. Mykytyuk

Lviv Polytechnic National University
References:
Abstract: Let $G/K$ be an irreducible Hermitian symmetric space of compact type with standard homogeneous complex structure. Then the real symplectic manifold $(T^*(G/K),\Omega)$ has the natural complex structure $J^-$. All $G$-invariant Kéhler structures $(J,\Omega)$ on $G$-invariant subdomains of $T^*(G/K)$ anticommuting with $J^-$ are constructed. Each hypercomplex structure of this kind, equipped with a suitable metric, defines a hyperkéhler structure. As an application, a new proof of the theorem of Harish-Chandra and Moore for Hermitian symmetric spaces is obtained.
Received: 11.03.2003
Bibliographic databases:
UDC: 514.765.1+512.813.4
MSC: 32Q15, 37J15
Language: English
Original paper language: Russian
Citation: I. V. Mykytyuk, “Invariant hyperkähler structures on the cotangent bundles of Hermitian symmetric spaces”, Sb. Math., 194:8 (2003), 1225–1250
Citation in format AMSBIB
\Bibitem{Myk03}
\by I.~V.~Mykytyuk
\paper Invariant hyperk\"ahler structures on the~cotangent bundles of
Hermitian symmetric spaces
\jour Sb. Math.
\yr 2003
\vol 194
\issue 8
\pages 1225--1250
\mathnet{http://mi.mathnet.ru//eng/sm763}
\crossref{https://doi.org/10.1070/SM2003v194n08ABEH000763}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2034534}
\zmath{https://zbmath.org/?q=an:1074.53040}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000186261600015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0344629360}
Linking options:
  • https://www.mathnet.ru/eng/sm763
  • https://doi.org/10.1070/SM2003v194n08ABEH000763
  • https://www.mathnet.ru/eng/sm/v194/i8/p113
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024