Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2010, Volume 201, Issue 7, Pages 1053–1068
DOI: https://doi.org/10.1070/SM2010v201n07ABEH004102
(Mi sm7588)
 

Recovering a function from its trigonometric integral

T. A. Sworowska

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: The approximate symmetric Henstock-Kurzweil integral is shown as solving the problem of the recovery of a function from its trigonometric integral. This being so, we generalize Offord's theorem, which is an analogue of de la Vallée Poussin's theorem for trigonometric series. A new condition for a function to be representable by a singular Fourier integral is also obtained.
Bibliography: 10 titles.
Keywords: trigonometric integral, approximate symmetric integral, Preiss-Thomson theorem, Offord's theorem, singular Fourier integral.
Received: 10.06.2009 and 03.12.2009
Russian version:
Matematicheskii Sbornik, 2010, Volume 201, Number 7, Pages 121–136
DOI: https://doi.org/10.4213/sm7588
Bibliographic databases:
Document Type: Article
UDC: 517.52
MSC: 26A36, 26A39
Language: English
Original paper language: Russian
Citation: T. A. Sworowska, “Recovering a function from its trigonometric integral”, Sb. Math., 201:7 (2010), 1053–1068
Citation in format AMSBIB
\Bibitem{Swo10}
\by T.~A.~Sworowska
\paper Recovering a~function from its trigonometric integral
\jour Sb. Math.
\yr 2010
\vol 201
\issue 7
\pages 1053--1068
\mathnet{http://mi.mathnet.ru//eng/sm7588}
\crossref{https://doi.org/10.1070/SM2010v201n07ABEH004102}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2907817}
\zmath{https://zbmath.org/?q=an:1202.42025}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010SbMat.201.1053S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000281540900006}
\elib{https://elibrary.ru/item.asp?id=19066219}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77958559036}
Linking options:
  • https://www.mathnet.ru/eng/sm7588
  • https://doi.org/10.1070/SM2010v201n07ABEH004102
  • https://www.mathnet.ru/eng/sm/v201/i7/p121
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:568
    Russian version PDF:226
    English version PDF:11
    References:76
    First page:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024