Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2009, Volume 200, Issue 11, Pages 1587–1615
DOI: https://doi.org/10.1070/SM2009v200n11ABEH004052
(Mi sm7587)
 

This article is cited in 40 scientific papers (total in 42 papers)

Groups of $S$-units in hyperelliptic fields and continued fractions

V. V. Benyash-Krivetsa, V. P. Platonovb

a Belarusian State University
b Scientific Research Institute for System Studies of RAS
References:
Abstract: New methods for calculating fundamental $S$-units in hyperelliptic fields are found. Continued fractions in function fields are investigated. As an application, it is proved that if a valuation is defined by a linear polynomial, then a fundamental $S$-unit in a hyperelliptic field can be found by expanding certain elements into continued fractions.
Bibliography: 11 titles.
Keywords: $S$-units, valuations, hyperelliptic fields, continued fractions, best approximations.
Received: 10.06.2009
Bibliographic databases:
UDC: 511.6
MSC: Primary 11R58; Secondary 11A55, 11R27
Language: English
Original paper language: Russian
Citation: V. V. Benyash-Krivets, V. P. Platonov, “Groups of $S$-units in hyperelliptic fields and continued fractions”, Sb. Math., 200:11 (2009), 1587–1615
Citation in format AMSBIB
\Bibitem{BenPla09}
\by V.~V.~Benyash-Krivets, V.~P.~Platonov
\paper Groups of $S$-units in hyperelliptic fields and continued fractions
\jour Sb. Math.
\yr 2009
\vol 200
\issue 11
\pages 1587--1615
\mathnet{http://mi.mathnet.ru//eng/sm7587}
\crossref{https://doi.org/10.1070/SM2009v200n11ABEH004052}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2589996}
\zmath{https://zbmath.org/?q=an:05685846}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200.1587B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000275236600002}
\elib{https://elibrary.ru/item.asp?id=19066094}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-74949122767}
Linking options:
  • https://www.mathnet.ru/eng/sm7587
  • https://doi.org/10.1070/SM2009v200n11ABEH004052
  • https://www.mathnet.ru/eng/sm/v200/i11/p15
  • This publication is cited in the following 42 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:640
    Russian version PDF:215
    English version PDF:19
    References:48
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024