Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2009, Volume 200, Issue 12, Pages 1767–1787
DOI: https://doi.org/10.1070/SM2009v200n12ABEH004058
(Mi sm7531)
 

This article is cited in 22 scientific papers (total in 22 papers)

Upper bound for the length of commutative algebras

O. V. Markova

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: By the length of a finite system of generators for a finite-dimensional associative algebra over an arbitrary field one means the least positive integer $k$ such that the words of length not exceeding $k$ span this algebra (as a vector space). The maximum length for the systems of generators of an algebra is referred to as the length of the algebra. In the present paper, an upper bound for the length of a commutative algebra in terms of a function of two invariants of the algebra, the dimension and the maximal degree of the minimal polynomial for the elements of the algebra, is obtained. As a corollary, a formula for the length of the algebra of diagonal matrices over an arbitrary field is obtained.
Bibliography: 8 titles.
Keywords: length of an algebra, matrix theory, commutative algebra, algebra of diagonal matrices.
Received: 28.01.2009
Bibliographic databases:
UDC: 512.552
MSC: Primary 16P10; Secondary 16R20
Language: English
Original paper language: Russian
Citation: O. V. Markova, “Upper bound for the length of commutative algebras”, Sb. Math., 200:12 (2009), 1767–1787
Citation in format AMSBIB
\Bibitem{Mar09}
\by O.~V.~Markova
\paper Upper bound for the length of commutative algebras
\jour Sb. Math.
\yr 2009
\vol 200
\issue 12
\pages 1767--1787
\mathnet{http://mi.mathnet.ru//eng/sm7531}
\crossref{https://doi.org/10.1070/SM2009v200n12ABEH004058}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2604536}
\zmath{https://zbmath.org/?q=an:1195.16028}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200.1767M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000275236600008}
\elib{https://elibrary.ru/item.asp?id=19066100}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77149144121}
Linking options:
  • https://www.mathnet.ru/eng/sm7531
  • https://doi.org/10.1070/SM2009v200n12ABEH004058
  • https://www.mathnet.ru/eng/sm/v200/i12/p41
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:550
    Russian version PDF:218
    English version PDF:25
    References:55
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024