Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2009, Volume 200, Issue 8, Pages 1247–1259
DOI: https://doi.org/10.1070/SM2009v200n08ABEH004036
(Mi sm7523)
 

This article is cited in 1 scientific paper (total in 1 paper)

The number of classes of Markov partitions for a hyperbolic automorphism of a 2-torus

A. V. Klimenko

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: The Markov partitions constructed by Adler and Weiss and the pre-Markov partitions related to them are important in the investigation of the properties of an Anosov diffeomorphism of a 2-torus. A connection is established between the number of equivalence classes of the simplest pre-Markov partitions of a fixed diffeomorphism with respect to the natural equivalence and the continued fraction expressing the slope of the unstable direction of the matrix defining this diffeomorphism.
Bibliography: 7 titles.
Keywords: Anosov diffeomorphisms, Markov partitions, continued fractions.
Received: 20.01.2009 and 25.03.2009
Bibliographic databases:
UDC: 517.938.5
MSC: 37D20
Language: English
Original paper language: Russian
Citation: A. V. Klimenko, “The number of classes of Markov partitions for a hyperbolic automorphism of a 2-torus”, Sb. Math., 200:8 (2009), 1247–1259
Citation in format AMSBIB
\Bibitem{Kli09}
\by A.~V.~Klimenko
\paper The number of classes of Markov partitions for a~hyperbolic automorphism of a~2-torus
\jour Sb. Math.
\yr 2009
\vol 200
\issue 8
\pages 1247--1259
\mathnet{http://mi.mathnet.ru//eng/sm7523}
\crossref{https://doi.org/10.1070/SM2009v200n08ABEH004036}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2573015}
\zmath{https://zbmath.org/?q=an:1183.37047}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200.1247K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271676400012}
\elib{https://elibrary.ru/item.asp?id=19066151}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-72849115574}
Linking options:
  • https://www.mathnet.ru/eng/sm7523
  • https://doi.org/10.1070/SM2009v200n08ABEH004036
  • https://www.mathnet.ru/eng/sm/v200/i8/p147
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024