Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2003, Volume 194, Issue 7, Pages 969–978
DOI: https://doi.org/10.1070/SM2003v194n07ABEH000750
(Mi sm750)
 

This article is cited in 3 scientific papers (total in 3 papers)

On $L^p$-uniqueness of symmetric diffusion operators on Riemannian manifolds

V. I. Bogacheva, M. Röcknerb

a M. V. Lomonosov Moscow State University
b Bielefeld University
References:
Abstract: Let $M$ be a complete Riemannian manifold of dimension $d>1$, let $\mu$ be a measure on $M$ with density $\exp U$ with respect to the Riemannian volume, and let $\mathscr Lf=\Delta f+\langle b,\nabla f\rangle$, where $U\in H^{p,1}_{\mathrm{loc}}(M)$ and $b=\nabla U$. It is shown that in the case $p>d$ and $q\in[p',p]$ the operator $\mathscr L$ on the domain $C_0^\infty(M)$ has a unique extension generating a $C_0$-semigroup on $L^q(M,\mu)$, that is, the set $(\mathscr L-I)(C_0^\infty(M))$ is dense in $L^q(M,\mu)$. In particular, the operator $\mathscr L$ is essentially self-adjoint on $L^2(M,\mu)$. A similar result is proved for elliptic operators with non-constant second order part that are formally symmetric with respect to some measure.
Received: 20.01.2003
Bibliographic databases:
UDC: 517.956+517.98+519.2
MSC: 58J05, 47F05
Language: English
Original paper language: Russian
Citation: V. I. Bogachev, M. Röckner, “On $L^p$-uniqueness of symmetric diffusion operators on Riemannian manifolds”, Sb. Math., 194:7 (2003), 969–978
Citation in format AMSBIB
\Bibitem{BogRoc03}
\by V.~I.~Bogachev, M.~R\"ockner
\paper On $L^p$-uniqueness of symmetric diffusion operators on Riemannian manifolds
\jour Sb. Math.
\yr 2003
\vol 194
\issue 7
\pages 969--978
\mathnet{http://mi.mathnet.ru//eng/sm750}
\crossref{https://doi.org/10.1070/SM2003v194n07ABEH000750}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2020376}
\zmath{https://zbmath.org/?q=an:1083.58032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000186261600002}
\elib{https://elibrary.ru/item.asp?id=13419948}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0345491527}
Linking options:
  • https://www.mathnet.ru/eng/sm750
  • https://doi.org/10.1070/SM2003v194n07ABEH000750
  • https://www.mathnet.ru/eng/sm/v194/i7/p15
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:486
    Russian version PDF:227
    English version PDF:14
    References:83
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024