Loading [MathJax]/jax/output/SVG/config.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2010, Volume 201, Issue 10, Pages 1403–1448
DOI: https://doi.org/10.1070/SM2010v201n10ABEH004116
(Mi sm7490)
 

This article is cited in 6 scientific papers (total in 6 papers)

A magnetic Schrödinger operator on a periodic graph

A. V. Badanina, E. L. Korotyaevb

a Arkhangelsk State Technical University
b Pushkin Leningrad State University
References:
Abstract: This paper looks at a magnetic Shrödinger operator on a graph of special form in $\mathbb R^3$. It is called an armchair graph because graphs of this form with operators on them are used as a possible model for the so-called armchair nanotube in the homogeneous magnetic field which has amplitude $b$ and is parallel to the axis of the nanotube. The spectrum of the operator in question consists of an absolutely continuous part (spectral bands, separated by gaps) and finitely many eigenvalues of infinite multiplicity. The asymptotic behaviour of gaps for fixed $b$ and high energies is described; it is proved that for all values of $b$, apart from a discrete set containing $b=0$, there exists an infinite system of nondegenerate gaps $G_n$ with length $|G_n|\to\infty$ as $n\to\infty$. The dependence of the spectrum on the magnetic field is investigated and the existence of gaps independent of $b$ is proved for certain special potentials. The asymptotic behaviour of gaps as $b\to0$ is described.
Bibliography: 32 titles.
Keywords: periodic graph, magnetic Schrödinger operator, spectral bands, asymptotic behaviour of spectral bands.
Received: 18.11.2008 and 09.04.2010
Bibliographic databases:
Document Type: Article
UDC: 517.984.5
MSC: Primary 34L05, 34L40; Secondary 81Q10
Language: English
Original paper language: Russian
Citation: A. V. Badanin, E. L. Korotyaev, “A magnetic Schrödinger operator on a periodic graph”, Sb. Math., 201:10 (2010), 1403–1448
Citation in format AMSBIB
\Bibitem{BadKor10}
\by A.~V.~Badanin, E.~L.~Korotyaev
\paper A~magnetic Schr\"odinger operator on a periodic graph
\jour Sb. Math.
\yr 2010
\vol 201
\issue 10
\pages 1403--1448
\mathnet{http://mi.mathnet.ru/eng/sm7490}
\crossref{https://doi.org/10.1070/SM2010v201n10ABEH004116}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2768822}
\zmath{https://zbmath.org/?q=an:1214.34024}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010SbMat.201.1403B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000285190300001}
\elib{https://elibrary.ru/item.asp?id=19066164}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78650385263}
Linking options:
  • https://www.mathnet.ru/eng/sm7490
  • https://doi.org/10.1070/SM2010v201n10ABEH004116
  • https://www.mathnet.ru/eng/sm/v201/i10/p3
  • This publication is cited in the following 6 articles:
    1. S. Richard, N. Tsuzu, “Spectral and scattering theory for topological crystals perturbed by infinitely many new edges”, Rev. Math. Phys., 34:04 (2022)  crossref
    2. Khrabustovskyi A., “Periodic Quantum Graphs With Predefined Spectral Gaps”, J. Phys. A-Math. Theor., 53:40 (2020), 405202  crossref  mathscinet  isi
    3. Parra D., Richard S., “Spectral and Scattering Theory For Schrodinger Operators on Perturbed Topological Crystals”, Rev. Math. Phys., 30:4 (2018), 1850009  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    4. S. A. Nazarov, “The spectra of rectangular lattices of quantum waveguides”, Izv. Math., 81:1 (2017), 29–90  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. V. A. Kozlov, S. A. Nazarov, “Model of saccular aneurysm of the bifurcation node of the artery”, J. Math. Sci. (N. Y.), 238:5 (2019), 676–688  mathnet  crossref
    6. S. A. Nazarov, “Transmission Conditions in One-Dimensional Model of a Rectangular Lattice of Thin Quantum Waveguides”, J Math Sci, 219:6 (2016), 994  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:643
    Russian version PDF:247
    English version PDF:20
    References:72
    First page:33
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025