Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2009, Volume 200, Issue 11, Pages 1575–1586
DOI: https://doi.org/10.1070/SM2009v200n11ABEH004051
(Mi sm7481)
 

This article is cited in 2 scientific papers (total in 2 papers)

Extrinsic geometric properties of the Rozendorn surface, an isometric immersion of the Lobachevskiǐ plane in $E^5$

Yu. A. Aminov

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine
References:
Abstract: The lengths of the normal curvature vectors on the Rozendorn surface $F^2$ are shown to be uniformly bounded above on the whole of the surface. A regular three-dimensional submanifold $F^3$, $F^2\subset F^3 \subset E^5$, is constructed in the form of a regular leaf whose sectional curvatures in the two-dimensional directions tangent to $F^2$ are strictly negative and bounded away from zero.
Bibliography: 9 titles.
Keywords: ellipse of normal curvature, normal connection, sectional curvature.
Received: 05.11.2008 and 02.07.2009
Bibliographic databases:
UDC: 514.752.44
MSC: 53C42
Language: English
Original paper language: Russian
Citation: Yu. A. Aminov, “Extrinsic geometric properties of the Rozendorn surface, an isometric immersion of the Lobachevskiǐ plane in $E^5$”, Sb. Math., 200:11 (2009), 1575–1586
Citation in format AMSBIB
\Bibitem{Ami09}
\by Yu.~A.~Aminov
\paper Extrinsic geometric properties of the Rozendorn surface,
an isometric immersion of the Lobachevski\v\i\ plane in~$E^5$
\jour Sb. Math.
\yr 2009
\vol 200
\issue 11
\pages 1575--1586
\mathnet{http://mi.mathnet.ru//eng/sm7481}
\crossref{https://doi.org/10.1070/SM2009v200n11ABEH004051}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2589995}
\zmath{https://zbmath.org/?q=an:1191.53042}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200.1575A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000275236600001}
\elib{https://elibrary.ru/item.asp?id=19066093}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-74949101353}
Linking options:
  • https://www.mathnet.ru/eng/sm7481
  • https://doi.org/10.1070/SM2009v200n11ABEH004051
  • https://www.mathnet.ru/eng/sm/v200/i11/p3
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024