Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2009, Volume 200, Issue 8, Pages 1127–1148
DOI: https://doi.org/10.1070/SM2009v200n08ABEH004031
(Mi sm7466)
 

This article is cited in 16 scientific papers (total in 16 papers)

Approximation by simple partial fractions on the semi-axis

P. A. Borodin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: This paper investigates the simple partial fractions (that is, the logarithmic derivatives of polynomials) all of whose poles lie within the angular domain $\Lambda_\gamma=\{z:\arg z\in(\gamma,2\pi-\gamma)\}$, for any $\gamma\in[0,\pi/2]$. It is shown that they are contained in a proper half-space of the space $L_p({\mathbb R}_+)$ for any $p\in(1,p_0)$ (in particular, they are not dense in this space) and conversely, they are dense in $L_p({\mathbb R}_+)$ for any $p\geqslant p_0$, where $p_0=(2\pi-2\gamma)/(\pi-2\gamma)$. The distances from the poles of a simple partial fraction $r$ to the semi-axis ${\mathbb R}_+$ are estimated in terms of the degree of the fraction $r$ and its norm in $L_2({\mathbb R}_+)$. The approximation properties of sets of simple partial fractions of degree at most $n$ are investigated, as well as properties of the least deviations $\rho_n(f)$ from these sets for the functions $f\in L_2({\mathbb R}_+)$.
Bibliography: 14 titles.
Keywords: approximation, simple partial fraction, integral metrics.
Received: 24.10.2008 and 01.04.2009
Bibliographic databases:
UDC: 517.538.5
MSC: 30E10, 41A20
Language: English
Original paper language: Russian
Citation: P. A. Borodin, “Approximation by simple partial fractions on the semi-axis”, Sb. Math., 200:8 (2009), 1127–1148
Citation in format AMSBIB
\Bibitem{Bor09}
\by P.~A.~Borodin
\paper Approximation by simple partial fractions on the semi-axis
\jour Sb. Math.
\yr 2009
\vol 200
\issue 8
\pages 1127--1148
\mathnet{http://mi.mathnet.ru//eng/sm7466}
\crossref{https://doi.org/10.1070/SM2009v200n08ABEH004031}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2573010}
\zmath{https://zbmath.org/?q=an:1185.30038}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200.1127B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271676400007}
\elib{https://elibrary.ru/item.asp?id=19066146}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-72849126841}
Linking options:
  • https://www.mathnet.ru/eng/sm7466
  • https://doi.org/10.1070/SM2009v200n08ABEH004031
  • https://www.mathnet.ru/eng/sm/v200/i8/p25
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1058
    Russian version PDF:254
    English version PDF:14
    References:70
    First page:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024