Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2003, Volume 194, Issue 6, Pages 897–917
DOI: https://doi.org/10.1070/SM2003v194n06ABEH000744
(Mi sm744)
 

This article is cited in 4 scientific papers (total in 4 papers)

Schrödinger operators with singular potentials and magnetic fields

V. N. Kolokoltsov

Institute for Information Transmission Problems, Russian Academy of Sciences
References:
Abstract: A formal Schrödinger operator of the form
$$ H=\biggl(-i\frac\partial{\partial x}+A(x)\biggr)^2+V(x), $$
in ${\mathbb R}^d$ is considered, where $A$ is a bounded measurable vector-valued function and both $V(x)$ and $\operatorname{div}A$ are measures satisfying certain additional conditions. It is shown that one can give meaning to such an operator as a lower bounded self-adjoint operator in $L^2({\mathbb R}^d)$. The corresponding heat kernel is constructed and its small-time asymptotics are obtained. A rigorous Feynman path integral representation for the solutions of the heat and Schrödinger's equations with generator $H$ is given.
Received: 05.01.2001 and 20.09.2002
Russian version:
Matematicheskii Sbornik, 2003, Volume 194, Number 6, Pages 105–126
DOI: https://doi.org/10.4213/sm744
Bibliographic databases:
UDC: 517.958
Language: English
Original paper language: Russian
Citation: V. N. Kolokoltsov, “Schrödinger operators with singular potentials and magnetic fields”, Mat. Sb., 194:6 (2003), 105–126; Sb. Math., 194:6 (2003), 897–917
Citation in format AMSBIB
\Bibitem{Kol03}
\by V.~N.~Kolokoltsov
\paper Schr\"odinger operators with singular potentials and magnetic fields
\jour Mat. Sb.
\yr 2003
\vol 194
\issue 6
\pages 105--126
\mathnet{http://mi.mathnet.ru/sm744}
\crossref{https://doi.org/10.4213/sm744}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1992179}
\zmath{https://zbmath.org/?q=an:1069.35064}
\elib{https://elibrary.ru/item.asp?id=13855064}
\transl
\jour Sb. Math.
\yr 2003
\vol 194
\issue 6
\pages 897--917
\crossref{https://doi.org/10.1070/SM2003v194n06ABEH000744}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000185858900012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0142086983}
Linking options:
  • https://www.mathnet.ru/eng/sm744
  • https://doi.org/10.1070/SM2003v194n06ABEH000744
  • https://www.mathnet.ru/eng/sm/v194/i6/p105
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:479
    Russian version PDF:251
    English version PDF:17
    References:67
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024