Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2003, Volume 194, Issue 6, Pages 879–895
DOI: https://doi.org/10.1070/SM2003v194n06ABEH000743
(Mi sm743)
 

This article is cited in 1 scientific paper (total in 1 paper)

Theorems on tessellations by polygons

M. L. Gerver

International Institute of Earthquake Prediction Theory and Mathematical Geophysics RAS
References:
Abstract: What general regularity manifests itself in the fact that a triangle, and in general any convex polygon, cannot be tessellated by non-convex quadrangles? Another question: it is known that for $n>6$ the plane cannot be tessellated by convex $n$-gons if their diameters are bounded, while the areas are separated from zero; can this fact be generalized for non-convex polygons? In the present paper we introduce the characteristic $\chi(M)$ of a polygon $M$. We answer the above questions in terms of $\chi(M)$ and then study tessellations of the plane by $n$-gons equivalent to $M$, that is, with the same sequence of angles greater than and smaller than $\pi$.
Received: 16.08.2000 and 20.03.2003
Russian version:
Matematicheskii Sbornik, 2003, Volume 194, Number 6, Pages 87–104
DOI: https://doi.org/10.4213/sm743
Bibliographic databases:
UDC: 514+517
MSC: Primary 52C20; Secondary 05B45, 51M20, 52A10
Language: English
Original paper language: Russian
Citation: M. L. Gerver, “Theorems on tessellations by polygons”, Mat. Sb., 194:6 (2003), 87–104; Sb. Math., 194:6 (2003), 879–895
Citation in format AMSBIB
\Bibitem{Ger03}
\by M.~L.~Gerver
\paper Theorems on tessellations by polygons
\jour Mat. Sb.
\yr 2003
\vol 194
\issue 6
\pages 87--104
\mathnet{http://mi.mathnet.ru/sm743}
\crossref{https://doi.org/10.4213/sm743}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1992178}
\zmath{https://zbmath.org/?q=an:1084.52517}
\transl
\jour Sb. Math.
\yr 2003
\vol 194
\issue 6
\pages 879--895
\crossref{https://doi.org/10.1070/SM2003v194n06ABEH000743}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000185858900011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0142055277}
Linking options:
  • https://www.mathnet.ru/eng/sm743
  • https://doi.org/10.1070/SM2003v194n06ABEH000743
  • https://www.mathnet.ru/eng/sm/v194/i6/p87
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:521
    Russian version PDF:794
    English version PDF:20
    References:37
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024