Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2010, Volume 201, Issue 1, Pages 1–21
DOI: https://doi.org/10.1070/SM2010v201n01ABEH004063
(Mi sm7370)
 

This article is cited in 25 scientific papers (total in 25 papers)

Cox rings, semigroups and automorphisms of affine algebraic varieties

I. V. Arzhantsev, S. A. Gaifullin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We study the Cox realization of an affine variety, that is, a canonical representation of a normal affine variety with finitely generated divisor class group as a quotient of a factorially graded affine variety by an action of the Neron-Severi quasitorus. The realization is described explicitly for the quotient space of a linear action of a finite group. A universal property of this realization is proved, and some results in the divisor theory of an abstract semigroup emerging in this context are given. We show that each automorphism of an affine variety can be lifted to an automorphism of the Cox ring normalizing the grading. It follows that the automorphism group of an affine toric variety of dimension $\geqslant2$ without nonconstant invertible regular functions has infinite dimension. We obtain a wild automorphism of the three-dimensional quadratic cone that rises to the Anick automorphism of the polynomial algebra in four variables.
Bibliography: 22 titles.
Keywords: affine variety, quotient, divisor theory of a semigroup, toric variety, wild automorphism.
Received: 10.10.2008 and 06.06.2009
Bibliographic databases:
UDC: 512.711+512.745
MSC: Primary 14R20; Secondary 14L30, 14J50
Language: English
Original paper language: Russian
Citation: I. V. Arzhantsev, S. A. Gaifullin, “Cox rings, semigroups and automorphisms of affine algebraic varieties”, Sb. Math., 201:1 (2010), 1–21
Citation in format AMSBIB
\Bibitem{ArzGai10}
\by I.~V.~Arzhantsev, S.~A.~Gaifullin
\paper Cox rings, semigroups and automorphisms of affine algebraic varieties
\jour Sb. Math.
\yr 2010
\vol 201
\issue 1
\pages 1--21
\mathnet{http://mi.mathnet.ru//eng/sm7370}
\crossref{https://doi.org/10.1070/SM2010v201n01ABEH004063}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2641086}
\zmath{https://zbmath.org/?q=an:1201.14040}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010SbMat.201....1A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000277376300001}
\elib{https://elibrary.ru/item.asp?id=19066158}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77950311307}
Linking options:
  • https://www.mathnet.ru/eng/sm7370
  • https://doi.org/10.1070/SM2010v201n01ABEH004063
  • https://www.mathnet.ru/eng/sm/v201/i1/p3
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1238
    Russian version PDF:556
    English version PDF:34
    References:107
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024