Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2003, Volume 194, Issue 5, Pages 745–774
DOI: https://doi.org/10.1070/SM2003v194n05ABEH000737
(Mi sm737)
 

This article is cited in 2 scientific papers (total in 2 papers)

Impenetrability condition for a degenerate point of a one-term symmetric differential operator of even order

Yu. B. Orochko

Moscow State Institute of Electronics and Mathematics
References:
Abstract: Let $a(x)\in C^\infty[0,h]$, $b(x)\in C^\infty[-h,0]$, $h>0$, be real functions not vanishing on their definition intervals. For fixed $p>0$ and $q>0$ one considers the differential expressions
\begin{align*} s_p^+[f](x)&=(-1)^n(x^pa(x)f^{(n)})^{(n)}(x), \\ s_q^-[f](x)&=(-1)^n((-x)^qb(x)f^{(n)})^{(n)}(x) \end{align*}
of arbitrary even order $2n$ degenerate at the point $x=0$. Let $H_p^+$ and $H_q^-$ be the minimal symmetric operators induced by $s_p^+[f](x)$ and $s_q^-[f](x)$ in the Hilbert spaces $L^2(0,h)$ and $L^2(-h,0)$, respectively.
“Sewing together” the differential expressions $s_p^+[f](x)$ and $s_q^-[f](x)$ at $x=0$ one obtains a new differential expression $s_{pq}[f](x)$, $x\in[-h,h]$, which is degenerate at the same point, an interior point of $[-h,h]$. Under certain constraints on $p$ and $q$ the differential expression $s_{pq}[f](x)$ gives rise to a minimal symmetric operator $H_{pq}$ in $L^2(-h,h)$ which is a symmetric extension of the orthogonal sum $H_q^-\oplus H_p^+$. The point $x=0$ is called in this paper an interior barrier for $s_{pq}[f](x)$. Conditions ensuring the equality $H_{pq}=H_q\oplus H_p$ are found. It is natural to call an interior barrier an impenetrable interior interface if this equality holds and it is a penetrable interior interface if it fails. The main result of this paper is as follows: the point $x=0$ is an impenetrable interior interface if $p,q\geqslant 2n-\frac12$, and this condition is best possible in a certain sense.
Received: 30.10.2002
Bibliographic databases:
UDC: 517.98
MSC: Primary 47E05; Secondary 34L05
Language: English
Original paper language: Russian
Citation: Yu. B. Orochko, “Impenetrability condition for a degenerate point of a one-term symmetric differential operator of even order”, Sb. Math., 194:5 (2003), 745–774
Citation in format AMSBIB
\Bibitem{Oro03}
\by Yu.~B.~Orochko
\paper Impenetrability condition for a~degenerate point of a~one-term symmetric differential operator of even order
\jour Sb. Math.
\yr 2003
\vol 194
\issue 5
\pages 745--774
\mathnet{http://mi.mathnet.ru//eng/sm737}
\crossref{https://doi.org/10.1070/SM2003v194n05ABEH000737}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1992112}
\zmath{https://zbmath.org/?q=an:1079.47045}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000185858900005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0142118610}
Linking options:
  • https://www.mathnet.ru/eng/sm737
  • https://doi.org/10.1070/SM2003v194n05ABEH000737
  • https://www.mathnet.ru/eng/sm/v194/i5/p109
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:501
    Russian version PDF:196
    English version PDF:18
    References:67
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024