Loading [MathJax]/jax/output/CommonHTML/jax.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2003, Volume 194, Issue 5, Pages 745–774
DOI: https://doi.org/10.1070/SM2003v194n05ABEH000737
(Mi sm737)
 

This article is cited in 2 scientific papers (total in 2 papers)

Impenetrability condition for a degenerate point of a one-term symmetric differential operator of even order

Yu. B. Orochko

Moscow State Institute of Electronics and Mathematics
References:
Abstract: Let a(x)C[0,h], b(x)C[h,0], h>0, be real functions not vanishing on their definition intervals. For fixed p>0 and q>0 one considers the differential expressions
s+p[f](x)=(1)n(xpa(x)f(n))(n)(x),sq[f](x)=(1)n((x)qb(x)f(n))(n)(x)
of arbitrary even order 2n degenerate at the point x=0. Let H+p and Hq be the minimal symmetric operators induced by s+p[f](x) and sq[f](x) in the Hilbert spaces L2(0,h) and L2(h,0), respectively.
“Sewing together” the differential expressions s+p[f](x) and sq[f](x) at x=0 one obtains a new differential expression spq[f](x), x[h,h], which is degenerate at the same point, an interior point of [h,h]. Under certain constraints on p and q the differential expression spq[f](x) gives rise to a minimal symmetric operator Hpq in L2(h,h) which is a symmetric extension of the orthogonal sum HqH+p. The point x=0 is called in this paper an interior barrier for spq[f](x). Conditions ensuring the equality Hpq=HqHp are found. It is natural to call an interior barrier an impenetrable interior interface if this equality holds and it is a penetrable interior interface if it fails. The main result of this paper is as follows: the point x=0 is an impenetrable interior interface if p,q2n12, and this condition is best possible in a certain sense.
Received: 30.10.2002
Bibliographic databases:
UDC: 517.98
MSC: Primary 47E05; Secondary 34L05
Language: English
Original paper language: Russian
Citation: Yu. B. Orochko, “Impenetrability condition for a degenerate point of a one-term symmetric differential operator of even order”, Sb. Math., 194:5 (2003), 745–774
Citation in format AMSBIB
\Bibitem{Oro03}
\by Yu.~B.~Orochko
\paper Impenetrability condition for a~degenerate point of a~one-term symmetric differential operator of even order
\jour Sb. Math.
\yr 2003
\vol 194
\issue 5
\pages 745--774
\mathnet{http://mi.mathnet.ru/eng/sm737}
\crossref{https://doi.org/10.1070/SM2003v194n05ABEH000737}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1992112}
\zmath{https://zbmath.org/?q=an:1079.47045}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000185858900005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0142118610}
Linking options:
  • https://www.mathnet.ru/eng/sm737
  • https://doi.org/10.1070/SM2003v194n05ABEH000737
  • https://www.mathnet.ru/eng/sm/v194/i5/p109
  • This publication is cited in the following 2 articles:
    1. V. Zh. Sakbaev, “Cauchy problem for degenerating linear differential equations and averaging of approximating regularizations”, Journal of Mathematical Sciences, 213:3 (2016), 287–459  mathnet  crossref  mathscinet
    2. Yu. B. Orochko, “Deficiency indices of a one-term symmetric differential operator of even order degenerate in the interior of an interval”, Sb. Math., 196:5 (2005), 673–702  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:550
    Russian version PDF:205
    English version PDF:24
    References:73
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025