Abstract:
New (mixed) series in ultraspherical polynomials Pα,αn(x)
are introduced. The basic difference between a mixed series in the polynomials
Pα,αn(x) and a Fourier series in the same polynomials
is as follows: a mixed series contains terms of the form 2rfαr,k(k+2α)[r]Pα−r,α−rk+r(x),
where 1⩽r is an integer and fαr,k
is the k th Fourier coefficient of the derivative f(r)(x)
with respect to the ultraspherical polynomials Pα,αk(x).
It is shown that the partial sums Yαn+2r(f,x)
of a mixed series in the polynomial Pα,αk(x)
contrast favourably with Fourier sums Sαn(f,x)
in the same polynomials as regards their approximation
properties in classes of differentiable and analytic
functions, and also in classes of functions of variable smoothness.
In particular, the Yαn+2r(f,x) can be used for the simultaneous approximation of a function f(x) and its derivatives of orders up to (r−1),
whereas the Sαn(f,x) are not suitable for this purpose.
\Bibitem{Sha03}
\by I.~I.~Sharapudinov
\paper Mixed series in ultraspherical polynomials and
their approximation properties
\jour Sb. Math.
\yr 2003
\vol 194
\issue 3
\pages 423--456
\mathnet{http://mi.mathnet.ru/eng/sm723}
\crossref{https://doi.org/10.1070/SM2003v194n03ABEH000723}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1992559}
\zmath{https://zbmath.org/?q=an:1071.42017}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000184089700006}
\elib{https://elibrary.ru/item.asp?id=13442864}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0037828510}
Linking options:
https://www.mathnet.ru/eng/sm723
https://doi.org/10.1070/SM2003v194n03ABEH000723
https://www.mathnet.ru/eng/sm/v194/i3/p115
This publication is cited in the following 21 articles:
I. I. Sharapudinov, “Sobolev-orthogonal systems of functions and the Cauchy problem for ODEs”, Izv. Math., 83:2 (2019), 391–412
I. I. Sharapudinov, “Sobolev-orthogonal systems of functions and some of their applications”, Russian Math. Surveys, 74:4 (2019), 659–733
I. I. Sharapudinov, “Sobolev orthogonal polynomials generated by Jacobi and Legendre polynomials, and special series with the sticking property for their partial sums”, Sb. Math., 209:9 (2018), 1390–1417
Sharapudinov I.I., “Sobolev Orthogonal Polynomials Associated With Chebyshev Polynomials of the First Kind and the Cauchy Problem For Ordinary Differential Equations”, Differ. Equ., 54:12 (2018), 1602–1619
I. I. Sharapudinov, “Approximation Properties of Fourier Series of Sobolev Orthogonal Polynomials with Jacobi Weight and Discrete Masses”, Math. Notes, 101:4 (2017), 718–734
I. I. Sharapudinov, Z. D. Gadzhieva, R. M. Gadzhimirzaev, “Raznostnye uravneniya i polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Meiksnera”, Vladikavk. matem. zhurn., 19:2 (2017), 58–72
I. I. Sharapudinov, S. R. Magomedov, “Systems of functions orthogonal in the sense of Sobolev associated with Haar functions and the Cauchy problem for ODEs”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 7, 1–15
I. I. Sharapudinov, Z. D. Gadzhieva, R. M. Gadzhimirzaev, “Sobolev orthogonal functions on the grid, generated by discrete orthogonal functions and the Cauchy problem for the difference equation”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 7, 29–39
I. I. Sharapudinov, “O priblizhenii resheniya zadachi Koshi dlya nelineinykh sistem ODU posredstvom ryadov Fure po funktsiyam, ortogonalnym po Sobolevu”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 7, 66–76
M. S. Sultanakhmedov, “Cauchy problem for the difference equation and Sobolev orthogonal functions on the finite grid, generated by discrete orthogonal functions”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 7, 77–85
I. I. Sharapudinov, Z. D. Gadzhieva, “Polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Meiksnera”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 16:3 (2016), 310–321
I. I. Sharapudinov, “Asimptoticheskie svoistva polinomov, ortogonalnykh po Sobolevu, porozhdennykh polinomami Yakobi”, Dagestanskie elektronnye matematicheskie izvestiya, 2016, no. 6, 1–24
I. I. Sharapudinov, Z. D. Gadzhieva, R. M. Gadzhimirzaev, “Sistemy funktsii, ortogonalnykh otnositelno skalyarnykh proizvedenii tipa Soboleva s diskretnymi massami, porozhdennykh klassicheskimi ortogonalnymi sistemami”, Dagestanskie elektronnye matematicheskie izvestiya, 2016, no. 6, 31–60
I. I. Sharapudinov, M. G. Magomed-Kasumov, S. R. Magomedov, “Polinomy, ortogonalnye po Sobolevu, assotsiirovannye s polinomami Chebysheva pervogo roda”, Dagestanskie elektronnye matematicheskie izvestiya, 2015, no. 4, 1–14
I. I. Sharapudinov, T. I. Sharapudinov, “Mixed Series of Jacobi and Chebyshev Polynomials and Their Discretization”, Math. Notes, 88:1 (2010), 112–139
I. I. Sharapudinov, “Approximating smooth functions using algebraic-trigonometric polynomials”, Sb. Math., 201:11 (2010), 1689–1713
I. I. Sharapudinov, G. N. Muratova, “Nekotorye svoistva $r$-kratno integrirovannykh ryadov po sisteme Khaara”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 9:1 (2009), 68–76
I. I. Sharapudinov, “Approximation Properties of the Vallée-Poussin Means of Partial Sums of a Mixed Series of Legendre Polynomials”, Math. Notes, 84:3 (2008), 417–434
I. I. Sharapudinov, “Approximation properties of mixed series in terms of Legendre polynomials on the classes $W^r$”, Sb. Math., 197:3 (2006), 433–452