Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2003, Volume 194, Issue 3, Pages 423–456
DOI: https://doi.org/10.1070/SM2003v194n03ABEH000723
(Mi sm723)
 

This article is cited in 21 scientific papers (total in 21 papers)

Mixed series in ultraspherical polynomials and their approximation properties

I. I. Sharapudinov

Daghestan Scientific Centre of the Russian Academy of Sciences
References:
Abstract: New (mixed) series in ultraspherical polynomials $P_n^{\alpha,\alpha}(x)$ are introduced. The basic difference between a mixed series in the polynomials $P_n^{\alpha,\alpha}(x)$ and a Fourier series in the same polynomials is as follows: a mixed series contains terms of the form $\dfrac{2^rf_{r,k}^\alpha}{(k+2\alpha)^{[r]}}P_{k+r}^{\alpha-r,\alpha-r}(x)$, where $1\leqslant r$ is an integer and $f_{r,k}^\alpha$ is the $k$ th Fourier coefficient of the derivative $f^{(r)}(x)$ with respect to the ultraspherical polynomials $P_k^{\alpha,\alpha}(x)$. It is shown that the partial sums ${\mathscr Y}_{n+2r}^\alpha(f,x)$ of a mixed series in the polynomial $P_k^{\alpha,\alpha}(x)$ contrast favourably with Fourier sums $S_n^\alpha(f,x)$ in the same polynomials as regards their approximation properties in classes of differentiable and analytic functions, and also in classes of functions of variable smoothness. In particular, the ${\mathscr Y}_{n+2r}^\alpha(f,x)$ can be used for the simultaneous approximation of a function $f(x)$ and its derivatives of orders up to $(r- 1)$, whereas the $S_n^\alpha(f,x)$ are not suitable for this purpose.
Received: 25.10.2001 and 12.11.2002
Russian version:
Matematicheskii Sbornik, 2003, Volume 194, Number 3, Pages 115–148
DOI: https://doi.org/10.4213/sm723
Bibliographic databases:
UDC: 517.5
MSC: 41A58, 42C10
Language: English
Original paper language: Russian
Citation: I. I. Sharapudinov, “Mixed series in ultraspherical polynomials and their approximation properties”, Mat. Sb., 194:3 (2003), 115–148; Sb. Math., 194:3 (2003), 423–456
Citation in format AMSBIB
\Bibitem{Sha03}
\by I.~I.~Sharapudinov
\paper Mixed series in ultraspherical polynomials and
their approximation properties
\jour Mat. Sb.
\yr 2003
\vol 194
\issue 3
\pages 115--148
\mathnet{http://mi.mathnet.ru/sm723}
\crossref{https://doi.org/10.4213/sm723}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1992559}
\zmath{https://zbmath.org/?q=an:1071.42017}
\elib{https://elibrary.ru/item.asp?id=13442864}
\transl
\jour Sb. Math.
\yr 2003
\vol 194
\issue 3
\pages 423--456
\crossref{https://doi.org/10.1070/SM2003v194n03ABEH000723}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000184089700006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0037828510}
Linking options:
  • https://www.mathnet.ru/eng/sm723
  • https://doi.org/10.1070/SM2003v194n03ABEH000723
  • https://www.mathnet.ru/eng/sm/v194/i3/p115
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:652
    Russian version PDF:244
    English version PDF:12
    References:70
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024