|
This article is cited in 2 scientific papers (total in 2 papers)
A necessary condition for all the zeros of an entire function of exponential type to lie in a curvilinear half-plane
A. M. Sedletskii Moscow Power Engineering Institute (Technical University)
Abstract:
Under the assumption that the integral
$$
\int_{\mathbb R}\frac{\log|F(x)|}{1+x^2}\,dx
$$
exists, a condition necessary for all the zeros of the entire function $F(z)$ of exponential type to lie in the curvilinear half-plane $\operatorname{Im}z\leqslant\ (\geqslant)\ h(|\operatorname{Re}z|)$ (where $h(t)$ is a regularly varying function) is obtained.
Received: 26.01.1994
Citation:
A. M. Sedletskii, “A necessary condition for all the zeros of an entire function of exponential type to lie in a curvilinear half-plane”, Sb. Math., 186:9 (1995), 1353–1362
Linking options:
https://www.mathnet.ru/eng/sm72https://doi.org/10.1070/SM1995v186n09ABEH000072 https://www.mathnet.ru/eng/sm/v186/i9/p125
|
Statistics & downloads: |
Abstract page: | 382 | Russian version PDF: | 112 | English version PDF: | 19 | References: | 61 | First page: | 1 |
|