Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2003, Volume 194, Issue 2, Pages 199–223
DOI: https://doi.org/10.1070/SM2003v194n02ABEH000712
(Mi sm712)
 

This article is cited in 4 scientific papers (total in 4 papers)

Abstract class field theory (a finitary approach)

Yu. L. Ershov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: A definition of the reciprocity homomorphism in Neukirch's abstract class field theory is given. This definition uses fairly large additional non-ramified extensions, but they are all finite. This will enable one to apply the theory thus constructed to the effectivization (algorithmization) of local and global class field theory alike.
The combination of Neukirch's and Hazewinkel's approaches used in the paper clarifies class field theory even at the abstract level of exposition.
Received: 20.06.2002
Russian version:
Matematicheskii Sbornik, 2003, Volume 194, Number 2, Pages 37–60
DOI: https://doi.org/10.4213/sm712
Bibliographic databases:
UDC: 510.53+512.52
MSC: Primary 11R37; Secondary 11G45, 11S31, 14L05
Language: English
Original paper language: Russian
Citation: Yu. L. Ershov, “Abstract class field theory (a finitary approach)”, Mat. Sb., 194:2 (2003), 37–60; Sb. Math., 194:2 (2003), 199–223
Citation in format AMSBIB
\Bibitem{Ers03}
\by Yu.~L.~Ershov
\paper Abstract class field theory (a~finitary approach)
\jour Mat. Sb.
\yr 2003
\vol 194
\issue 2
\pages 37--60
\mathnet{http://mi.mathnet.ru/sm712}
\crossref{https://doi.org/10.4213/sm712}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1992148}
\zmath{https://zbmath.org/?q=an:1046.11081}
\transl
\jour Sb. Math.
\yr 2003
\vol 194
\issue 2
\pages 199--223
\crossref{https://doi.org/10.1070/SM2003v194n02ABEH000712}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000182636900010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0038587646}
Linking options:
  • https://www.mathnet.ru/eng/sm712
  • https://doi.org/10.1070/SM2003v194n02ABEH000712
  • https://www.mathnet.ru/eng/sm/v194/i2/p37
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:599
    Russian version PDF:263
    English version PDF:8
    References:81
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024