Loading [MathJax]/jax/output/SVG/config.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2002, Volume 193, Issue 12, Pages 1801–1836
DOI: https://doi.org/10.1070/SM2002v193n12ABEH000700
(Mi sm700)
 

This article is cited in 15 scientific papers (total in 15 papers)

Asymptotics of solutions of the stationary Navier–Stokes system of equations in a domain of layer type

K. Pileckas

Institute of Mathematics and Informatics
References:
Abstract: The stationary Navier–Stokes system of equations is considered in a domain $\Omega \subset\mathbb R^3$ coinciding for large $|x|$ with the layer $\Pi =\mathbb R^2\times (0,1)$. A theorem is proved about the asymptotic behaviour of the solutions as $|x|\to\infty$. In particular, it is proved that for arbitrary data of the problem the solutions having non-zero flux through a cylindrical cross-section of the layer behave at infinity like the solutions of the linear Stokes system.
Received: 10.08.2000 and 11.03.2002
Bibliographic databases:
UDC: 517.9
MSC: Primary 35Q30, 35B40; Secondary 35A05, 46E35, 76D05
Language: English
Original paper language: Russian
Citation: K. Pileckas, “Asymptotics of solutions of the stationary Navier–Stokes system of equations in a domain of layer type”, Sb. Math., 193:12 (2002), 1801–1836
Citation in format AMSBIB
\Bibitem{Pil02}
\by K.~Pileckas
\paper Asymptotics of solutions of the stationary Navier--Stokes system of equations in a~domain of layer type
\jour Sb. Math.
\yr 2002
\vol 193
\issue 12
\pages 1801--1836
\mathnet{http://mi.mathnet.ru/eng/sm700}
\crossref{https://doi.org/10.1070/SM2002v193n12ABEH000700}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1992105}
\zmath{https://zbmath.org/?q=an:1069.35052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000181721200010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036875429}
Linking options:
  • https://www.mathnet.ru/eng/sm700
  • https://doi.org/10.1070/SM2002v193n12ABEH000700
  • https://www.mathnet.ru/eng/sm/v193/i12/p69
  • This publication is cited in the following 15 articles:
    1. Zijin Li, Xinghong Pan, Jiaqi Yang, “Characterization of smooth solutions to the Navier–Stokes equations in a pipe with two types of slip boundary conditions”, Calc. Var., 64:3 (2025)  crossref
    2. Giovanni Leoni, Ian Tice, “Traveling Wave Solutions to the Free Boundary Incompressible Navier‐Stokes Equations”, Comm Pure Appl Math, 76:10 (2023), 2474  crossref
    3. Stevenson N., Tice I., “Traveling Wave Solutions to the Multilayer Free Boundary Incompressible Navier-Stokes Equations”, SIAM J. Math. Anal., 53:6 (2021), 6370–6423  crossref  mathscinet  isi  scopus
    4. Tai-Peng Tsai, “Liouville type theorems for stationary Navier–Stokes equations”, SN Partial Differ. Equ. Appl., 2:1 (2021)  crossref
    5. Kaulakyte K., Pileckas K., “Nonhomogeneous Boundary Value Problem For the Time Periodic Linearized Navier-Stokes System in a Domain With Outlet to Infinity”, J. Math. Anal. Appl., 489:1 (2020), 124126  crossref  mathscinet  isi
    6. Bryan Carrillo, Xinghong Pan, Qi S. Zhang, Na Zhao, “Decay and Vanishing of some D-Solutions of the Navier–Stokes Equations”, Arch Rational Mech Anal, 237:3 (2020), 1383  crossref
    7. Li Z., Pan X., “On the Vanishing of Some D-Solutions to the Stationary Magnetohydrodynamics System”, J. Math. Fluid Mech., 21:4 (2019), UNSP 52  crossref  mathscinet  isi
    8. Pileckas K., Specovius-Neugebauer M., “Spatial Behavior of Solutions to the Time Periodic Stokes System in a Three Dimensional Layer”, J. Differ. Equ., 263:10 (2017), 6317–6346  crossref  mathscinet  zmath  isi  scopus
    9. K. Kaulakytė, K. Pileckas, “On the Nonhomogeneous Boundary Value Problem for the Navier–Stokes System in a Class of Unbounded Domains”, J. Math. Fluid Mech, 2012  crossref  mathscinet  zmath  isi  scopus  scopus
    10. Pileckas K., Specovius-Neugebauer M., “Asymptotics of solutions to the Navier–Stokes system with nonzero flux in a layer-like domain”, Asymptotic Analysis, 69:3–4 (2010), 219–231  crossref  mathscinet  zmath  isi  elib
    11. Chipot M., Mardare S., “Asymptotic behaviour of the Stokes problem in cylinders becoming unbounded in one direction”, J. Math. Pures Appl. (9), 90:2 (2008), 133–159  crossref  mathscinet  zmath  isi  scopus  scopus
    12. Nazarov S.A., Specovius-Neugebauer M., “Artificial boundary conditions for the Stokes and Navier–Stokes equations in domains that are layer-like at infinity”, Z. Anal. Anwend., 27:2 (2008), 125–155  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    13. Pileckas K., Zaleskis L., “Weighted coercive estimates of solutions to the Stokes problem in parabolically growing layer”, Asymptot. Anal., 54:3-4 (2007), 211–233  mathscinet  zmath  isi  elib
    14. V. Keblikas, K. Pileckas, “Existence of a nonstationary Poiseuille solution”, Siberian Math. J., 46:3 (2005), 514–526  mathnet  crossref  mathscinet  zmath  isi  elib
    15. J. Math. Sci. (N. Y.), 130:4 (2005), 4852–4870  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:611
    Russian version PDF:229
    English version PDF:40
    References:115
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025