Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1995, Volume 186, Issue 1, Pages 121–131
DOI: https://doi.org/10.1070/SM1995v186n01ABEH000007
(Mi sm7)
 

This article is cited in 6 scientific papers (total in 6 papers)

Bernstein type inequalities for derivatives of rational functions in $L_p$ spaces for $p<1$

A. A. Pekarskii, H. Stahl

Yanka Kupala State University of Grodno
References:
Abstract: It is shown that if $r$ is a rational function of degree $n$, $0<p<1$, $1/p\notin\mathbb N$, and $r\in L_p(-1,1)$, then for any $s\in\mathbb N$
\begin{equation} \biggl(\int _{-1}^1|r^{(s)}(x)|^\sigma\,dx\biggr)^{1/\sigma} \leqslant cn^s\biggr(\int _{-1}^1|r(x)|^p\,dx\biggr)^{1/p}, \tag{1} \end{equation}
where $\sigma =(s+1/p)^{-1}$ and $c>0$ depends only on $p$ and $s$.
The problem of proving the inequality (1) was posed by Sevast'yanov in 1973. Up to the present, it has been solved for $1<p\leqslant\infty$. In the case $1/p\in\mathbb N$ the inequality is not valid. Some applications of (1) to problems of rational approximation are also given in this paper. Similar questions are considered for the line and circle.
Received: 26.11.1993
Bibliographic databases:
UDC: 517.53
MSC: Primary 41A17, 41A20, 30E10; Secondary 30D55
Language: English
Original paper language: Russian
Citation: A. A. Pekarskii, H. Stahl, “Bernstein type inequalities for derivatives of rational functions in $L_p$ spaces for $p<1$”, Sb. Math., 186:1 (1995), 121–131
Citation in format AMSBIB
\Bibitem{PekSta95}
\by A.~A.~Pekarskii, H.~Stahl
\paper Bernstein type inequalities for derivatives of rational functions in $L_p$ spaces for $p<1$
\jour Sb. Math.
\yr 1995
\vol 186
\issue 1
\pages 121--131
\mathnet{http://mi.mathnet.ru//eng/sm7}
\crossref{https://doi.org/10.1070/SM1995v186n01ABEH000007}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1641684}
\zmath{https://zbmath.org/?q=an:0847.41009}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RZ91900007}
Linking options:
  • https://www.mathnet.ru/eng/sm7
  • https://doi.org/10.1070/SM1995v186n01ABEH000007
  • https://www.mathnet.ru/eng/sm/v186/i1/p119
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:547
    Russian version PDF:132
    English version PDF:22
    References:58
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024