|
This article is cited in 9 scientific papers (total in 9 papers)
Removable singularities of plurisubharmonic functions of class $\operatorname{Lip}_\alpha$
A. S. Sadullaev, Zh. R. Yarmetov Al-Kharezmi Urgench State University, Khorezm, Uzbekistan
Abstract:
The structure of singular sets of subharmonic functions satisfying a Lipschitz condition is analyzed. The following theorem is the main result of the paper.
Theorem.
{\it Let $E$ be a closed subset of a domain
$D\subset\mathbb R^n$ such that $H_{n-2+\alpha}(E)=0$, $0\leqslant\alpha\leqslant2$. Then every function in the class $\operatorname{Lip}_\alpha(D)$ that is subharmonic in $D\setminus E$ extends subharmonically to $D$.}
Received: 04.11.1993
Citation:
A. S. Sadullaev, Zh. R. Yarmetov, “Removable singularities of plurisubharmonic functions of class $\operatorname{Lip}_\alpha$”, Sb. Math., 186:1 (1995), 133–150
Linking options:
https://www.mathnet.ru/eng/sm8https://doi.org/10.1070/SM1995v186n01ABEH000008 https://www.mathnet.ru/eng/sm/v186/i1/p131
|
Statistics & downloads: |
Abstract page: | 463 | Russian version PDF: | 141 | English version PDF: | 25 | References: | 65 | First page: | 1 |
|