Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2002, Volume 193, Issue 11, Pages 1639–1670
DOI: https://doi.org/10.1070/SM2002v193n11ABEH000692
(Mi sm692)
 

This article is cited in 9 scientific papers (total in 9 papers)

Aspherical pro-$p$-groups

O. V. Mel'nikov

Belarusian State University
References:
Abstract: The notion of an aspherical pro-$p$-group is introduced. It is proved that if a group $G=F/N$ is aspherical, where $F$ is a free pro-$p$-group, then the relation $\mathbb F_p[[G]]$-module $\overline N=N/N^p[N,N]$ satisfies an assertion of the type of Lyndon's identity theorem. The finite subgroups and the centre of $G$ are described. The structure of an aspherical pro-$p$-group $G$ with a soluble normal subgroup $A\ne\{1\}$ is studied. In particular, if $A\cong\mathbb Z_p$, then $G$ contains a subgroup of finite index of the form $A\leftthreetimes W$ where $W$ is a free pro-$p$-group.
Received: 25.01.2002
Russian version:
Matematicheskii Sbornik, 2002, Volume 193, Number 11, Pages 71–104
DOI: https://doi.org/10.4213/sm692
Bibliographic databases:
UDC: 512.546.37
MSC: Primary 20E18; Secondary 18G35, 20F05, 20E06
Language: English
Original paper language: Russian
Citation: O. V. Mel'nikov, “Aspherical pro-$p$-groups”, Mat. Sb., 193:11 (2002), 71–104; Sb. Math., 193:11 (2002), 1639–1670
Citation in format AMSBIB
\Bibitem{Mel02}
\by O.~V.~Mel'nikov
\paper Aspherical pro-$p$-groups
\jour Mat. Sb.
\yr 2002
\vol 193
\issue 11
\pages 71--104
\mathnet{http://mi.mathnet.ru/sm692}
\crossref{https://doi.org/10.4213/sm692}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1937030}
\zmath{https://zbmath.org/?q=an:1064.20030}
\transl
\jour Sb. Math.
\yr 2002
\vol 193
\issue 11
\pages 1639--1670
\crossref{https://doi.org/10.1070/SM2002v193n11ABEH000692}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000181721200003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036875452}
Linking options:
  • https://www.mathnet.ru/eng/sm692
  • https://doi.org/10.1070/SM2002v193n11ABEH000692
  • https://www.mathnet.ru/eng/sm/v193/i11/p71
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:430
    Russian version PDF:194
    English version PDF:18
    References:46
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024