Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2002, Volume 193, Issue 10, Pages 1535–1556
DOI: https://doi.org/10.1070/SM2002v193n10ABEH000688
(Mi sm688)
 

This article is cited in 15 scientific papers (total in 15 papers)

The Borsuk problem for integral polytopes

A. M. Raigorodskii

M. V. Lomonosov Moscow State University
References:
Abstract: Let $f(d)$ be the minimum number of parts of smaller diameter into which one can partition an arbitrary bounded subset of $d$-dimensional Euclidean space $\mathbb R^d$. In 1933, Borsuk conjectured that $f(d)=d+1$. Recent results of Kahn–Kalai, Nilli, and the present author demonstrate that the class of integral polytopes is one of the most important classes having a direct connection with Borsuk's conjecture and problems close to it.
In the present paper, with the use of the methods of the set-covering problem new upper bounds are obtained for the minimum number of parts of smaller diameter into which each $d$-dimensional $(0,1)$-polytope or cross-polytope can be partitioned. These bounds are substantially better than the author's similar former results as well as all previously known bounds for $f(d)$.
In addition, $(0,1)$-polytopes and cross-polytopes in small dimensions are studied in this paper.
Received: 20.02.2002
Bibliographic databases:
MSC: Primary 51M20, 52B12, 52B20, 05C15, 05A05; Secondary 52C10
Language: English
Original paper language: Russian
Citation: A. M. Raigorodskii, “The Borsuk problem for integral polytopes”, Sb. Math., 193:10 (2002), 1535–1556
Citation in format AMSBIB
\Bibitem{Rai02}
\by A.~M.~Raigorodskii
\paper The Borsuk problem for integral polytopes
\jour Sb. Math.
\yr 2002
\vol 193
\issue 10
\pages 1535--1556
\mathnet{http://mi.mathnet.ru//eng/sm688}
\crossref{https://doi.org/10.1070/SM2002v193n10ABEH000688}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1937039}
\zmath{https://zbmath.org/?q=an:1055.52011}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000180375800013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036767848}
Linking options:
  • https://www.mathnet.ru/eng/sm688
  • https://doi.org/10.1070/SM2002v193n10ABEH000688
  • https://www.mathnet.ru/eng/sm/v193/i10/p139
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:685
    Russian version PDF:280
    English version PDF:25
    References:67
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024