Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2002, Volume 193, Issue 9, Pages 1333–1347
DOI: https://doi.org/10.1070/SM2002v193n09ABEH000680
(Mi sm680)
 

This article is cited in 1 scientific paper (total in 1 paper)

Estimates of the integral modulus of continuity of functions with rarely changing Fourier coefficients

S. A. Telyakovskii

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: The functions under consideration are those satisfying the condition $\Delta a_i=\Delta b_i=0$ for all $i\ne n_j$, where $\{n_j\}$ is a lacunary sequence.
An asymptotic estimate of the rate of decrease of the modulus of continuity in the $L$-metric of such functions in terms of their Fourier coefficients is obtained.
Received: 10.12.2001
Bibliographic databases:
Document Type: Article
UDC: 517.518.45
MSC: 42A16, 26A15
Language: English
Original paper language: Russian
Citation: S. A. Telyakovskii, “Estimates of the integral modulus of continuity of functions with rarely changing Fourier coefficients”, Sb. Math., 193:9 (2002), 1333–1347
Citation in format AMSBIB
\Bibitem{Tel02}
\by S.~A.~Telyakovskii
\paper Estimates of the integral modulus of continuity of functions with
rarely changing Fourier coefficients
\jour Sb. Math.
\yr 2002
\vol 193
\issue 9
\pages 1333--1347
\mathnet{http://mi.mathnet.ru//eng/sm680}
\crossref{https://doi.org/10.1070/SM2002v193n09ABEH000680}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1936858}
\zmath{https://zbmath.org/?q=an:1051.42003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000180375800004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036767669}
Linking options:
  • https://www.mathnet.ru/eng/sm680
  • https://doi.org/10.1070/SM2002v193n09ABEH000680
  • https://www.mathnet.ru/eng/sm/v193/i9/p93
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025