Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2002, Volume 193, Issue 9, Pages 1303–1332
DOI: https://doi.org/10.1070/SM2002v193n09ABEH000679
(Mi sm679)
 

This article is cited in 7 scientific papers (total in 7 papers)

Padé approximants for entire functions with regularly decreasing Taylor coefficients

V. N. Rusak, A. P. Starovoitov

Belarusian State University
References:
Abstract: For a class of entire functions the asymptotic behaviour of the Hadamard determinants $D_{n,m}$ as $0\leqslant m\leqslant m(n)\to\infty$ and $n\to\infty$ is described. This enables one to study the behaviour of parabolic sequences from Padé and Chebyshev tables for many individual entire functions. The central result of the paper is as follows: for some sequences $\{(n,m(n))\}$ in certain classes of entire functions (with regular Taylor coefficients) the Padé approximants $\{\pi_{n,m(n)}\}$, which provide the locally best possible rational approximations, converge to the given function uniformly on the compact set $D=\{z:|z|\leqslant 1\}$ with asymptotically best rate.
Received: 28.09.2001 and 27.05.2002
Bibliographic databases:
UDC: 517.51+517.53
MSC: Primary 41A21, 41A20; Secondary 30D15
Language: English
Original paper language: Russian
Citation: V. N. Rusak, A. P. Starovoitov, “Padé approximants for entire functions with regularly decreasing Taylor coefficients”, Sb. Math., 193:9 (2002), 1303–1332
Citation in format AMSBIB
\Bibitem{RusSta02}
\by V.~N.~Rusak, A.~P.~Starovoitov
\paper Pad\'e approximants for entire functions with regularly decreasing Taylor coefficients
\jour Sb. Math.
\yr 2002
\vol 193
\issue 9
\pages 1303--1332
\mathnet{http://mi.mathnet.ru//eng/sm679}
\crossref{https://doi.org/10.1070/SM2002v193n09ABEH000679}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1936857}
\zmath{https://zbmath.org/?q=an:1047.41012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000180375800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036767858}
Linking options:
  • https://www.mathnet.ru/eng/sm679
  • https://doi.org/10.1070/SM2002v193n09ABEH000679
  • https://www.mathnet.ru/eng/sm/v193/i9/p63
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025