Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2002, Volume 193, Issue 9, Pages 1281–1301
DOI: https://doi.org/10.1070/SM2002v193n09ABEH000678
(Mi sm678)
 

This article is cited in 2 scientific papers (total in 2 papers)

On sets of convergence and divergence of multiple orthogonal series

M. I. Dyachenkoa, K. S. Kazarianb

a M. V. Lomonosov Moscow State University
b Universidad Autonoma de Madrid
References:
Abstract: Multiple Fourier series with respect to uniformly bounded orthonormal systems (ONSs) are studied. The following results are obtained.
\medskip Theorem 1. \textit{Let $\Phi=\{\varphi_n(x)\}_{n=1}^\infty$ be a complete orthonormal system on $[0,1]$ that is uniformly bounded by $M$ on this interval, assume that $m\geqslant2$, and let $\Phi(m)=\{\varphi_{\mathbf n}(\mathbf x)\}_{\mathbf n \in\mathbb N^m}$, where $\varphi_{\mathbf n}(\mathbf n) =\varphi_{n_1}(x_1)\dotsb\varphi_{n_m}(x_m)$. Then there exists a function $f(\mathbf x)\in L([0,1]^m)$ cubically diverges on some measurable subset $\mathscr H$ of $[0,1]^m$ with $\mu_m(\mathscr H)\geqslant 1-(1-1/M^2)^m$. }
\medskip Theorem 3. For $M>1$ and an integer $m\geqslant 2$ let $E$ be an arbitrary measurable subset of $[0,1]$ such that $\mu(E)=1-1/M^2$. Then there exists a complete orthonormal system $\Phi$ on $[0,1]$ uniformly bounded by $M$ there such that the multiple Fourier series of each function $f(\mathbf x)\in L([0,1]^m)$ with respect to the product system $\Phi(m)$ cubically converges to $f(\mathbf x)$ a.e. on $E^m$.
\medskip Definitive results in this direction are established also for incomplete uniformly bounded ONSs.
Received: 26.02.2002
Bibliographic databases:
UDC: 517.51
MSC: Primary 42B08, 42C15; Secondary 40B05, 40A30
Language: English
Original paper language: Russian
Citation: M. I. Dyachenko, K. S. Kazarian, “On sets of convergence and divergence of multiple orthogonal series”, Sb. Math., 193:9 (2002), 1281–1301
Citation in format AMSBIB
\Bibitem{DyaKaz02}
\by M.~I.~Dyachenko, K.~S.~Kazarian
\paper On sets of convergence and divergence of multiple orthogonal series
\jour Sb. Math.
\yr 2002
\vol 193
\issue 9
\pages 1281--1301
\mathnet{http://mi.mathnet.ru//eng/sm678}
\crossref{https://doi.org/10.1070/SM2002v193n09ABEH000678}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1936856}
\zmath{https://zbmath.org/?q=an:1042.42021}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000180375800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036767668}
Linking options:
  • https://www.mathnet.ru/eng/sm678
  • https://doi.org/10.1070/SM2002v193n09ABEH000678
  • https://www.mathnet.ru/eng/sm/v193/i9/p41
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025