Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2002, Volume 193, Issue 8, Pages 1139–1149
DOI: https://doi.org/10.1070/SM2002v193n08ABEH000673
(Mi sm673)
 

This article is cited in 9 scientific papers (total in 9 papers)

Endomorphism rings of certain Jacobians in finite characteristic

Yu. G. Zarhin

Institute of Mathematical Problems of Biology, Russian Academy of Sciences
References:
Abstract: We prove that, under certain additional assumptions, the endomorphism ring of the Jacobian of a curve $y^\ell=f(x)$ contains a maximal commutative subring isomorphic to the ring of algebraic integers of the $\ell$th cyclotomic field. Here $\ell$ is an odd prime dividing the degree $n$ of the polynomial $f$ and different from the characteristic of the algebraically closed ground field; moreover, $n\geqslant 9$. The additional assumptions stipulate that all coefficients of $f$ lie in some subfield $K$ over which its (the polynomial's) Galois group coincides with either the full symmetric group $S_n$ or with the alternating group $A_n$.
Received: 04.12.2001
Russian version:
Matematicheskii Sbornik, 2002, Volume 193, Number 8, Pages 39–48
DOI: https://doi.org/10.4213/sm673
Bibliographic databases:
UDC: 513.6
MSC: Primary 11G10; Secondary 14H40
Language: English
Original paper language: Russian
Citation: Yu. G. Zarhin, “Endomorphism rings of certain Jacobians in finite characteristic”, Sb. Math., 193:8 (2002), 1139–1149
Citation in format AMSBIB
\Bibitem{Zar02}
\by Yu.~G.~Zarhin
\paper Endomorphism rings of certain Jacobians in finite characteristic
\jour Sb. Math.
\yr 2002
\vol 193
\issue 8
\pages 1139--1149
\mathnet{http://mi.mathnet.ru//eng/sm673}
\crossref{https://doi.org/10.1070/SM2002v193n08ABEH000673}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1934543}
\zmath{https://zbmath.org/?q=an:1044.11051}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000178959400009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036662267}
Linking options:
  • https://www.mathnet.ru/eng/sm673
  • https://doi.org/10.1070/SM2002v193n08ABEH000673
  • https://www.mathnet.ru/eng/sm/v193/i8/p39
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:390
    Russian version PDF:207
    English version PDF:8
    References:54
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024