Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2002, Volume 193, Issue 6, Pages 925–943
DOI: https://doi.org/10.1070/SM2002v193n06ABEH000664
(Mi sm664)
 

This article is cited in 7 scientific papers (total in 7 papers)

Weakly invertible elements in anisotropic weighted spaces of holomorphic functions in a polydisc

F. A. Shamoyan

I. G. Petrovsky Bryansk State Pedagogical University
References:
Abstract: The question of weak invertibility is studied in weighted $L^p$-spaces of holomorphic functions in a polydisc. A complete description of weight functions such that each non-vanishing bounded holomorphic function in a polydisc is weakly invertible in the corresponding spaces is obtained. In addition, it is shown for $n\geqslant 2$ that, by contrast with the one-dimensional case, the weak invertibility of outer functions is equivalent in a certain sense to the weak invertibility of inner functions.
Received: 15.01.2001
Bibliographic databases:
UDC: 517.55
MSC: Primary 32A37; Secondary 46E15
Language: English
Original paper language: Russian
Citation: F. A. Shamoyan, “Weakly invertible elements in anisotropic weighted spaces of holomorphic functions in a polydisc”, Sb. Math., 193:6 (2002), 925–943
Citation in format AMSBIB
\Bibitem{Sha02}
\by F.~A.~Shamoyan
\paper Weakly invertible elements in anisotropic weighted spaces
of holomorphic functions in a polydisc
\jour Sb. Math.
\yr 2002
\vol 193
\issue 6
\pages 925--943
\mathnet{http://mi.mathnet.ru//eng/sm664}
\crossref{https://doi.org/10.1070/SM2002v193n06ABEH000664}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1957957}
\zmath{https://zbmath.org/?q=an:1064.32005}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000178245000017}
\elib{https://elibrary.ru/item.asp?id=13406875}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036621970}
Linking options:
  • https://www.mathnet.ru/eng/sm664
  • https://doi.org/10.1070/SM2002v193n06ABEH000664
  • https://www.mathnet.ru/eng/sm/v193/i6/p143
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:394
    Russian version PDF:213
    English version PDF:8
    References:42
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024