Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2002, Volume 193, Issue 5, Pages 779–789
DOI: https://doi.org/10.1070/SM2002v193n05ABEH000656
(Mi sm656)
 

This article is cited in 22 scientific papers (total in 22 papers)

Total log canonical thresholds and generalized Eckardt points

I. A. Cheltsova, J. Parkb

a University of Liverpool
b University of Georgia
References:
Abstract: Let $X$ be a smooth hypersurface of degree $n\geqslant 3$ in ${\mathbb P}^n$. It is proved that the log canonical threshold of an arbitrary hyperplane section $H$ of it is at least $(n-1)/n$. Under the assumption of the log minimal model program it is also proved that the log canonical threshold of $H\subset X$ is $(n-1)/n$ if and only if $H$ is a cone in ${\mathbb P}^{n-1}$ over a smooth hypersurface of degree $n$ in ${\mathbb P}^{n-2}$.
Received: 31.05.2001
Russian version:
Matematicheskii Sbornik, 2002, Volume 193, Number 5, Pages 149–160
DOI: https://doi.org/10.4213/sm656
Bibliographic databases:
UDC: 513.6
MSC: 14J17
Language: English
Original paper language: Russian
Citation: I. A. Cheltsov, J. Park, “Total log canonical thresholds and generalized Eckardt points”, Mat. Sb., 193:5 (2002), 149–160; Sb. Math., 193:5 (2002), 779–789
Citation in format AMSBIB
\Bibitem{ChePar02}
\by I.~A.~Cheltsov, J.~Park
\paper Total log canonical thresholds and generalized Eckardt points
\jour Mat. Sb.
\yr 2002
\vol 193
\issue 5
\pages 149--160
\mathnet{http://mi.mathnet.ru/sm656}
\crossref{https://doi.org/10.4213/sm656}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1918252}
\zmath{https://zbmath.org/?q=an:1077.14016}
\elib{https://elibrary.ru/item.asp?id=13912669}
\transl
\jour Sb. Math.
\yr 2002
\vol 193
\issue 5
\pages 779--789
\crossref{https://doi.org/10.1070/SM2002v193n05ABEH000656}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000178245000009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036621940}
Linking options:
  • https://www.mathnet.ru/eng/sm656
  • https://doi.org/10.1070/SM2002v193n05ABEH000656
  • https://www.mathnet.ru/eng/sm/v193/i5/p149
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:380
    Russian version PDF:181
    English version PDF:22
    References:104
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024