Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2002, Volume 193, Issue 5, Pages 727–743
DOI: https://doi.org/10.1070/SM2002v193n05ABEH000653
(Mi sm653)
 

This article is cited in 14 scientific papers (total in 14 papers)

Maximum and minimum generalized entropy solutions to the Cauchy problem for a first-order quasilinear equation

E. Yu. Panov

Novgorod State University after Yaroslav the Wise
References:
Abstract: The existence of the maximum and minimum generalized entropy solutions of the Cauchy problem for a first-order quasilinear equation is proved in the general case of a flux vector that is merely continuous, when the uniqueness property of a generalized entropy solution does not necessarily hold. Some useful applications are presented. In particular, the uniqueness of the generalized entropy solution is established for input data that are periodic with respect to $n-1$ linearly independent space vectors ($n$ is the number of space variables).
Received: 05.02.2001
Bibliographic databases:
UDC: 517.95
MSC: 35L60, 35L65
Language: English
Original paper language: Russian
Citation: E. Yu. Panov, “Maximum and minimum generalized entropy solutions to the Cauchy problem for a first-order quasilinear equation”, Sb. Math., 193:5 (2002), 727–743
Citation in format AMSBIB
\Bibitem{Pan02}
\by E.~Yu.~Panov
\paper Maximum and minimum generalized entropy solutions to the~Cauchy problem
for a~first-order quasilinear equation
\jour Sb. Math.
\yr 2002
\vol 193
\issue 5
\pages 727--743
\mathnet{http://mi.mathnet.ru//eng/sm653}
\crossref{https://doi.org/10.1070/SM2002v193n05ABEH000653}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1918249}
\zmath{https://zbmath.org/?q=an:1058.35154}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000178245000006}
\elib{https://elibrary.ru/item.asp?id=13406873}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036621952}
Linking options:
  • https://www.mathnet.ru/eng/sm653
  • https://doi.org/10.1070/SM2002v193n05ABEH000653
  • https://www.mathnet.ru/eng/sm/v193/i5/p95
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:415
    Russian version PDF:191
    English version PDF:18
    References:68
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024