Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2002, Volume 193, Issue 5, Pages 727–743
DOI: https://doi.org/10.1070/SM2002v193n05ABEH000653
(Mi sm653)
 

This article is cited in 15 scientific papers (total in 15 papers)

Maximum and minimum generalized entropy solutions to the Cauchy problem for a first-order quasilinear equation

E. Yu. Panov

Novgorod State University after Yaroslav the Wise
References:
Abstract: The existence of the maximum and minimum generalized entropy solutions of the Cauchy problem for a first-order quasilinear equation is proved in the general case of a flux vector that is merely continuous, when the uniqueness property of a generalized entropy solution does not necessarily hold. Some useful applications are presented. In particular, the uniqueness of the generalized entropy solution is established for input data that are periodic with respect to n1n1 linearly independent space vectors (nn is the number of space variables).
Received: 05.02.2001
Bibliographic databases:
UDC: 517.95
MSC: 35L60, 35L65
Language: English
Original paper language: Russian
Citation: E. Yu. Panov, “Maximum and minimum generalized entropy solutions to the Cauchy problem for a first-order quasilinear equation”, Sb. Math., 193:5 (2002), 727–743
Citation in format AMSBIB
\Bibitem{Pan02}
\by E.~Yu.~Panov
\paper Maximum and minimum generalized entropy solutions to the~Cauchy problem
for a~first-order quasilinear equation
\jour Sb. Math.
\yr 2002
\vol 193
\issue 5
\pages 727--743
\mathnet{http://mi.mathnet.ru/eng/sm653}
\crossref{https://doi.org/10.1070/SM2002v193n05ABEH000653}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1918249}
\zmath{https://zbmath.org/?q=an:1058.35154}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000178245000006}
\elib{https://elibrary.ru/item.asp?id=13406873}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036621952}
Linking options:
  • https://www.mathnet.ru/eng/sm653
  • https://doi.org/10.1070/SM2002v193n05ABEH000653
  • https://www.mathnet.ru/eng/sm/v193/i5/p95
  • This publication is cited in the following 15 articles:
    1. E. Yu. Panov, “On the Theory of Entropy Sub- And Supersolutions of Nonlinear Degenerate Parabolic Equations”, J Math Sci, 2024  crossref
    2. E. Yu. Panov, “K teorii entropiinykh sub- i superreshenii nelineinykh vyrozhdayuschikhsya parabolicheskikh uravnenii”, SMFN, 69, no. 2, Rossiiskii universitet druzhby narodov, M., 2023, 306–331  mathnet  crossref
    3. Evgeny Yu. Panov, “On Entropy Solutions of Scalar Conservation Laws with Discontinuous Flux”, Arch Rational Mech Anal, 247:5 (2023)  crossref
    4. E. Yu. Panov, “On the Theory of Entropy Solutions of Nonlinear Degenerate Parabolic Equations”, J Math Sci, 265:6 (2022), 988  crossref
    5. Evgeny Yu. Panov, “On decay of entropy solutions to multidimensional conservation laws in the case of perturbed periodic initial data”, J. Hyper. Differential Equations, 19:01 (2022), 141  crossref
    6. Panov E.Yu., “On Some Properties of Entropy Solutions of Degenerate Non-Linear Anisotropic Parabolic Equations”, J. Differ. Equ., 275 (2021), 139–166  crossref  mathscinet  isi  scopus
    7. Panov E.Yu., “On Decay of Entropy Solutions to Nonlinear Degenerate Parabolic Equation With Almost Periodic Initial Data”, Lobachevskii J. Math., 42:5, SI (2021), 974–988  crossref  mathscinet  isi
    8. Panov E.Yu., “To the Theory of Entropy Sub-Solutions of Degenerate Nonlinear Parabolic Equations”, Math. Meth. Appl. Sci., 43:16 (2020), 9387–9404  crossref  mathscinet  isi
    9. E. Yu. Panov, “K teorii entropiinykh reshenii nelineinykh vyrozhdayuschikhsya parabolicheskikh uravnenii”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 66, no. 2, Rossiiskii universitet druzhby narodov, M., 2020, 292–313  mathnet  crossref
    10. Panov E.Y., “On Decay of Entropy Solutions to Multidimensional Conservation Laws”, SIAM J. Math. Anal., 52:2 (2020), 1310–1317  crossref  mathscinet  isi
    11. Panov E.Yu., “On the Cauchy problem for scalar conservation laws in the class of Besicovitch almost periodic functions: Global well-posedness and decay property”, J. Hyberbolic Differ. Equ., 13:3 (2016), 633–659  crossref  mathscinet  zmath  isi  scopus
    12. P. V. Lysuho, E. Yu. Panov, “Renormalized entropy solutions to the Cauchy problem for first order quasilinear conservation laws in the class of periodic functions”, J Math Sci, 2011  crossref  mathscinet  zmath  scopus  scopus  scopus
    13. Panov E.Yu., “On the Dirichlet Problem for First Order Quasilinear Equations on a Manifold”, Trans Amer Math Soc, 363:5 (2011), 2393–2446  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    14. Panov E.Y., “To the theory of generalized entropy solutions of the Cauchy problem for a first order quasilinear equation in the class of locally integrable functions”, Hyperbolic Problems: Theory, Numerics, Applications, 2003, 789–796  crossref  mathscinet  zmath  isi
    15. E. Yu. Panov, “On generalized entropy solutions of the Cauchy problem for a first-order quasilinear equation in the class of locally summable functions”, Izv. Math., 66:6 (2002), 1171–1218  mathnet  crossref  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:469
    Russian version PDF:206
    English version PDF:29
    References:77
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025