Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2010, Volume 201, Issue 2, Pages 235–251
DOI: https://doi.org/10.1070/SM2010v201n02ABEH004071
(Mi sm6386)
 

This article is cited in 2 scientific papers (total in 2 papers)

Codimensions of generalized polynomial identities

A. S. Gordienko

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: It is proved that for every finite-dimensional associative algebra $A$ over a field of characteristic zero there are numbers $C\in\mathbb Q_+$ and $t\in\mathbb Z_+$ such that $gc_n(A)\sim Cn^td^n$ as $n\to\infty$, where $d=PI\exp(A)\in\mathbb Z_+$. Thus, Amitsur's and Regev's conjectures hold for the codimensions $gc_n(A)$ of the generalized polynomial identities.
Bibliography: 6 titles.
Keywords: associative algebra, generalized polynomial identity, asymptotic behaviour of codimensions, $PI$-exponent, representation of a symmetric group.
Received: 25.06.2008 and 10.07.2009
Russian version:
Matematicheskii Sbornik, 2010, Volume 201, Number 2, Pages 79–94
DOI: https://doi.org/10.4213/sm6386
Bibliographic databases:
UDC: 512.552.4
MSC: Primary 16R50; Secondary 16R10, 20C30
Language: English
Original paper language: Russian
Citation: A. S. Gordienko, “Codimensions of generalized polynomial identities”, Mat. Sb., 201:2 (2010), 79–94; Sb. Math., 201:2 (2010), 235–251
Citation in format AMSBIB
\Bibitem{Gor10}
\by A.~S.~Gordienko
\paper Codimensions of generalized polynomial identities
\jour Mat. Sb.
\yr 2010
\vol 201
\issue 2
\pages 79--94
\mathnet{http://mi.mathnet.ru/sm6386}
\crossref{https://doi.org/10.4213/sm6386}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2656324}
\zmath{https://zbmath.org/?q=an:1196.16021}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010SbMat.201..235G}
\elib{https://elibrary.ru/item.asp?id=19066185}
\transl
\jour Sb. Math.
\yr 2010
\vol 201
\issue 2
\pages 235--251
\crossref{https://doi.org/10.1070/SM2010v201n02ABEH004071}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000277376300009}
\elib{https://elibrary.ru/item.asp?id=15322617}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954782283}
Linking options:
  • https://www.mathnet.ru/eng/sm6386
  • https://doi.org/10.1070/SM2010v201n02ABEH004071
  • https://www.mathnet.ru/eng/sm/v201/i2/p79
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:447
    Russian version PDF:180
    English version PDF:7
    References:72
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024