Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2009, Volume 200, Issue 6, Pages 783–801
DOI: https://doi.org/10.1070/SM2009v200n06ABEH004019
(Mi sm6359)
 

This article is cited in 25 scientific papers (total in 25 papers)

Estimating the chromatic numbers of Euclidean space by convex minimization methods

E. S. Gorskaya, I. M. Mitricheva (Shitova), V. Yu. Protasov, A. M. Raigorodskii

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: The chromatic numbers of the Euclidean space ${\mathbb R}^n$ with $k$ forbidden distances are investigated (that is, the minimum numbers of colours necessary to colour all points in ${\mathbb R}^n$ so that no two points of the same colour lie at a forbidden distance from each other). Estimates for the growth exponents of the chromatic numbers as $n\to\infty$ are obtained. The so-called linear algebra method which has been developed is used for this. It reduces the problem of estimating the chromatic numbers to an extremal problem. To solve this latter problem a fundamentally new approach is used, which is based on the theory of convex extremal problems and convex analysis. This allows the required estimates to be found for any $k$. For $k\le20$ these estimates are found explicitly; they are the best possible ones in the framework of the method mentioned above.
Bibliography: 18 titles.
Keywords: chromatic number, distance graph, convex optimization.
Received: 05.05.2008 and 09.12.2008
Russian version:
Matematicheskii Sbornik, 2009, Volume 200, Number 6, Pages 3–22
DOI: https://doi.org/10.4213/sm6359
Bibliographic databases:
UDC: 514.177.2+517.272+519.157
MSC: Primary 52C10, 51K05, 05C15; Secondary 05C12
Language: English
Original paper language: Russian
Citation: E. S. Gorskaya, I. M. Mitricheva (Shitova), V. Yu. Protasov, A. M. Raigorodskii, “Estimating the chromatic numbers of Euclidean space by convex minimization methods”, Mat. Sb., 200:6 (2009), 3–22; Sb. Math., 200:6 (2009), 783–801
Citation in format AMSBIB
\Bibitem{GorMitPro09}
\by E.~S.~Gorskaya, I.~M.~Mitricheva~(Shitova), V.~Yu.~Protasov, A.~M.~Raigorodskii
\paper Estimating the chromatic numbers of Euclidean space by convex minimization methods
\jour Mat. Sb.
\yr 2009
\vol 200
\issue 6
\pages 3--22
\mathnet{http://mi.mathnet.ru/sm6359}
\crossref{https://doi.org/10.4213/sm6359}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2553072}
\zmath{https://zbmath.org/?q=an:05636162}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200..783G}
\elib{https://elibrary.ru/item.asp?id=19066134}
\transl
\jour Sb. Math.
\yr 2009
\vol 200
\issue 6
\pages 783--801
\crossref{https://doi.org/10.1070/SM2009v200n06ABEH004019}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000269865000008}
\elib{https://elibrary.ru/item.asp?id=15312273}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350164286}
Linking options:
  • https://www.mathnet.ru/eng/sm6359
  • https://doi.org/10.1070/SM2009v200n06ABEH004019
  • https://www.mathnet.ru/eng/sm/v200/i6/p3
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1029
    Russian version PDF:318
    English version PDF:31
    References:70
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024