Loading [MathJax]/jax/output/SVG/config.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2002, Volume 193, Issue 2, Pages 205–230
DOI: https://doi.org/10.1070/SM2002v193n02ABEH000627
(Mi sm627)
 

This article is cited in 5 scientific papers (total in 5 papers)

Pseudodifference operators and uniform convergence of divided differences

I. K. Lifanov, L. N. Poltavskii

N.E. Zhukovsky Military Engineering Academy
References:
Abstract: The concept of pseudodifference operator is introduced. The properties of a class of pseudodifference operators in spaces of fractional quotients are studied. A local theorem on the uniform convergence of divided differences of arbitrary order for an approximate solution is established. In particular, the local infinite differentiability of a precise solution of operator equations of elliptic type with locally infinitely differentiable right-hand side is proved on the basis of a numerical method. Examples related to applications are presented.
Received: 11.02.2001
Bibliographic databases:
UDC: 517.5
MSC: Primary 39A13, 39A70, 65N99; Secondary 35J15
Language: English
Original paper language: Russian
Citation: I. K. Lifanov, L. N. Poltavskii, “Pseudodifference operators and uniform convergence of divided differences”, Sb. Math., 193:2 (2002), 205–230
Citation in format AMSBIB
\Bibitem{LifPol02}
\by I.~K.~Lifanov, L.~N.~Poltavskii
\paper Pseudodifference operators and uniform convergence of
divided differences
\jour Sb. Math.
\yr 2002
\vol 193
\issue 2
\pages 205--230
\mathnet{http://mi.mathnet.ru/eng/sm627}
\crossref{https://doi.org/10.1070/SM2002v193n02ABEH000627}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1912169}
\zmath{https://zbmath.org/?q=an:1031.39014}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000175532600009}
\elib{https://elibrary.ru/item.asp?id=13402995}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036012354}
Linking options:
  • https://www.mathnet.ru/eng/sm627
  • https://doi.org/10.1070/SM2002v193n02ABEH000627
  • https://www.mathnet.ru/eng/sm/v193/i2/p53
  • This publication is cited in the following 5 articles:
    1. V. B. Vasilyev, O. A. Tarasova, “On Discrete Boundary-Value Problems and Their Approximation Properties”, J Math Sci, 272:5 (2023), 634  crossref
    2. Vasilyev A.V. Vasilyev V.B. Tarasova O.A., “Frames of Solutions and Discrete Analysis of Pseudo-Differential Equations”, Math. Meth. Appl. Sci., 2022  crossref  mathscinet  isi
    3. V. B. Vasilev, O. A. Tarasova, “O diskretnykh kraevykh zadachakh i ikh approksimatsionnykh svoistvakh”, Geometriya i mekhanika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 174, VINITI RAN, M., 2020, 12–19  mathnet  crossref  mathscinet
    4. Vasilyev A.V. Vasilyev V.B., “Pseudo-Differential Operators and Equations in a Discrete Half-Space”, Math. Model. Anal., 23:3 (2018), 492–506  crossref  mathscinet  isi  scopus
    5. Vasilyev A.V., Vasilyev V.B., “Two-Scale Estimates For Special Finite Discrete Operators”, Math. Model. Anal., 22:3 (2017), 300–310  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:489
    Russian version PDF:224
    English version PDF:22
    References:84
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025