Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2002, Volume 193, Issue 1, Pages 93–118
DOI: https://doi.org/10.1070/SM2002v193n01ABEH000622
(Mi sm622)
 

This article is cited in 6 scientific papers (total in 6 papers)

Impact of quadratic non-linearity on the dynamics of periodic solutions of a wave equation

A. Yu. Kolesova, N. Kh. Rozovb

a P. G. Demidov Yaroslavl State University
b M. V. Lomonosov Moscow State University
References:
Abstract: For the non-linear telegraph equation with homogeneous Dirichlet or Neumann conditions at the end-points of a finite interval the question of the existence and the stability of time-periodic solutions bifurcating from the zero equilibrium state is considered. The dynamics of these solutions under a change of the diffusion coefficient (that is, the coefficient of the second derivative with respect to the space variable) is investigated. For the Dirichlet boundary conditions it is shown that this dynamics substantially depends on the presence – or the absence – of quadratic terms in the non-linearity. More precisely, it is shown that a quadratic non-linearity results in the occurrence, under an unbounded decrease of diffusion, of an infinite sequence of bifurcations of each periodic solution. En route, the related issue of the limits of applicability of Yu.S. Kolesov's method of quasinormal forms to the construction of self-oscillations in singularly perturbed hyperbolic boundary value problems is studied.
Received: 26.03.2001
Bibliographic databases:
UDC: 517.926
MSC: Primary 35B10, 35B40; Secondary 35L70
Language: English
Original paper language: Russian
Citation: A. Yu. Kolesov, N. Kh. Rozov, “Impact of quadratic non-linearity on the dynamics of periodic solutions of a wave equation”, Sb. Math., 193:1 (2002), 93–118
Citation in format AMSBIB
\Bibitem{KolRoz02}
\by A.~Yu.~Kolesov, N.~Kh.~Rozov
\paper Impact of quadratic non-linearity on the~dynamics
of periodic solutions of a~wave equation
\jour Sb. Math.
\yr 2002
\vol 193
\issue 1
\pages 93--118
\mathnet{http://mi.mathnet.ru//eng/sm622}
\crossref{https://doi.org/10.1070/SM2002v193n01ABEH000622}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1906173}
\zmath{https://zbmath.org/?q=an:1055.35013}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000175532600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036012341}
Linking options:
  • https://www.mathnet.ru/eng/sm622
  • https://doi.org/10.1070/SM2002v193n01ABEH000622
  • https://www.mathnet.ru/eng/sm/v193/i1/p93
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:516
    Russian version PDF:174
    English version PDF:21
    References:72
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024