Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2001, Volume 192, Issue 12, Pages 1829–1876
DOI: https://doi.org/10.1070/SM2001v192n12ABEH000617
(Mi sm617)
 

Characterization of Hadamard vector classes in terms of least deviations of their elements from vectors of finite degree

G. V. Radzievskii

Institute of Mathematics, Ukrainian National Academy of Sciences
References:
Abstract: Let $A$ be a linear operator with domain $\mathfrak D(A)$ in a complex Banach space $X$. An element $g\in\mathfrak D_\infty(A):=\bigcap_{j=0}^\infty\mathfrak D(A^j)$ is called a vector of degree at most $\xi$ $(>0)$ relative to $A$ if $\|A^jg\|\leqslant c(g)\xi^j$, $j=0,1,\dots$ . The set of vectors of degree at most $\xi$ is denoted by $\mathfrak G_\xi(A)$ and the least deviation of an element $f$ of $X$ from the set $\mathfrak G_\xi(A)$ is denoted by $E_\xi(f,A)$. For a fixed sequence of positive numbers $\{\psi_j\}_{j=1}^\infty$ consider a function $\gamma(\xi):=\min_{j=1,2,\dots}(\xi\psi_j)^{1/j}$. Conditions for the sequence $\{\psi_j\}_{j=1}^\infty$ and the operator $A$ are found that ensure the equality
$$ \limsup_{j\to\infty}\biggl(\frac{\|A^jf\|}{\psi_j}\biggr)^{1/j}=\limsup_{\xi\to\infty}\frac\xi{\gamma(E_\xi(f,A)^{-1})}\,. $$
for $f\in\mathfrak D_\infty(A)$. If the quantity on the left-hand side of this formula is finite, then $f$ belongs to the Hadamard class determined by the operator $A$ and the sequence $\{\psi_j\}_{j=1}^\infty$. One consequence of the above formula is an expression in terms of $E_\xi(f,A)$ for the radius of holomorphy of the vector-valued function $F(zA)f$, where $f\in\mathfrak D_\infty(A)$, and $F(z):=\sum_{j=1}^\infty z^j/\psi_j$ is an entire function.
Received: 06.02.2001
Bibliographic databases:
UDC: 517.43+517.5
MSC: Primary 41A65; Secondary 46G20, 46B99, 47A05
Language: English
Original paper language: Russian
Citation: G. V. Radzievskii, “Characterization of Hadamard vector classes in terms of least deviations of their elements from vectors of finite degree”, Sb. Math., 192:12 (2001), 1829–1876
Citation in format AMSBIB
\Bibitem{Rad01}
\by G.~V.~Radzievskii
\paper Characterization of Hadamard vector classes in terms of least deviations of their elements from vectors of finite degree
\jour Sb. Math.
\yr 2001
\vol 192
\issue 12
\pages 1829--1876
\mathnet{http://mi.mathnet.ru//eng/sm617}
\crossref{https://doi.org/10.1070/SM2001v192n12ABEH000617}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1885914}
\zmath{https://zbmath.org/?q=an:1040.47011}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000174857300011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035528654}
Linking options:
  • https://www.mathnet.ru/eng/sm617
  • https://doi.org/10.1070/SM2001v192n12ABEH000617
  • https://www.mathnet.ru/eng/sm/v192/i12/p93
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:461
    Russian version PDF:242
    English version PDF:24
    References:68
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024