Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2001, Volume 192, Issue 9, Pages 1365–1380
DOI: https://doi.org/10.1070/SM2001v192n09ABEH000596
(Mi sm596)
 

This article is cited in 5 scientific papers (total in 5 papers)

On identities of free finitely generated alternative algebras over a field of characteristic 3

S. V. Pchelintsev

Moscow City Pedagogical University
References:
Abstract: In 1981 Filippov solved in the affirmative Shestakov's problem on the strictness of the inclusions in the chains of varieties generated by free alternative and Mal'cev algebras of finite rank over a field of characteristic distinct from 2 and 3. In the present paper an analogous result is proved for alternative algebras over a field of characteristic 3. The proof is based on the construction of three families of identities that hold on the algebras of the corresponding rank. A disproof of the identities on algebras of larger rank is carried out with the help of a prime commutative alternative algebra. It is also proved that in varieties of alternative algebras of finite basis rank over a field of characteristic 3 every soluble algebra is nilpotent.
Received: 17.10.2000
Bibliographic databases:
UDC: 512.554.5
MSC: 17D05
Language: English
Original paper language: Russian
Citation: S. V. Pchelintsev, “On identities of free finitely generated alternative algebras over a field of characteristic 3”, Sb. Math., 192:9 (2001), 1365–1380
Citation in format AMSBIB
\Bibitem{Pch01}
\by S.~V.~Pchelintsev
\paper On identities of free finitely generated alternative algebras over a~field of characteristic~3
\jour Sb. Math.
\yr 2001
\vol 192
\issue 9
\pages 1365--1380
\mathnet{http://mi.mathnet.ru/eng/sm596}
\crossref{https://doi.org/10.1070/SM2001v192n09ABEH000596}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1867011}
\zmath{https://zbmath.org/?q=an:1029.17025}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000173373400005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035624825}
Linking options:
  • https://www.mathnet.ru/eng/sm596
  • https://doi.org/10.1070/SM2001v192n09ABEH000596
  • https://www.mathnet.ru/eng/sm/v192/i9/p109
  • This publication is cited in the following 5 articles:
    1. S. V. Pchelintsev, “Identities of prime alternative algebras”, Algebra and Logic, 59:2 (2020), 147–164  mathnet  crossref  crossref  isi
    2. Pchelintsev S.V., “Proper identities of finitely generated commutative alternative algebras”, J. Algebra, 470 (2017), 425–440  crossref  mathscinet  zmath  isi  scopus
    3. S. V. Pchelintsev, “Degenerate alternative algebras”, Siberian Math. J., 55:2 (2014), 323–335  mathnet  crossref  mathscinet  isi
    4. S. V. Pchelintsev, “Structure of finitely generated commutative alternative algebras and special Moufang loops”, Math. Notes, 80:3 (2006), 396–402  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    5. S. V. Pchelintsev, “Prime alternative algebras that are nearly commutative”, Izv. Math., 68:1 (2004), 181–204  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:401
    Russian version PDF:199
    English version PDF:30
    References:61
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025