Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2001, Volume 192, Issue 9, Pages 1275–1296
DOI: https://doi.org/10.1070/SM2001v192n09ABEH000593
(Mi sm593)
 

This article is cited in 13 scientific papers (total in 13 papers)

Theorems on ball mean values in symmetric spaces

V. V. Volchkov

Donetsk State University
References:
Abstract: Various classes of functions on a non-compact Riemannian symmetric space $X$ of rank 1 with vanishing integrals over all balls of fixed radius are studied. The central result of the paper includes precise conditions on the growth of a linear combination of functions from such classes; in particular, failing these conditions means that each of these functions is equal to zero. This is a considerable refinement over the well-known two-radii theorem of Berenstein–Zalcman. As one application, a description of the Pompeiu subsets of $X$ is given in terms of approximation of their indicator functions in $L(X)$.
Received: 17.07.2000 and 21.05.2001
Russian version:
Matematicheskii Sbornik, 2001, Volume 192, Number 9, Pages 17–38
DOI: https://doi.org/10.4213/sm593
Bibliographic databases:
UDC: 517.5
MSC: Primary 26B15, 43A85, 53C65; Secondary 53C35
Language: English
Original paper language: Russian
Citation: V. V. Volchkov, “Theorems on ball mean values in symmetric spaces”, Mat. Sb., 192:9 (2001), 17–38; Sb. Math., 192:9 (2001), 1275–1296
Citation in format AMSBIB
\Bibitem{Vol01}
\by V.~V.~Volchkov
\paper Theorems on ball mean values in symmetric spaces
\jour Mat. Sb.
\yr 2001
\vol 192
\issue 9
\pages 17--38
\mathnet{http://mi.mathnet.ru/sm593}
\crossref{https://doi.org/10.4213/sm593}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1867008}
\zmath{https://zbmath.org/?q=an:1028.43011}
\transl
\jour Sb. Math.
\yr 2001
\vol 192
\issue 9
\pages 1275--1296
\crossref{https://doi.org/10.1070/SM2001v192n09ABEH000593}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000173373400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035528285}
Linking options:
  • https://www.mathnet.ru/eng/sm593
  • https://doi.org/10.1070/SM2001v192n09ABEH000593
  • https://www.mathnet.ru/eng/sm/v192/i9/p17
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:526
    Russian version PDF:197
    English version PDF:22
    References:88
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024