Loading [MathJax]/jax/output/SVG/config.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2001, Volume 192, Issue 9, Pages 1275–1296
DOI: https://doi.org/10.1070/SM2001v192n09ABEH000593
(Mi sm593)
 

This article is cited in 13 scientific papers (total in 13 papers)

Theorems on ball mean values in symmetric spaces

V. V. Volchkov

Donetsk State University
References:
Abstract: Various classes of functions on a non-compact Riemannian symmetric space $X$ of rank 1 with vanishing integrals over all balls of fixed radius are studied. The central result of the paper includes precise conditions on the growth of a linear combination of functions from such classes; in particular, failing these conditions means that each of these functions is equal to zero. This is a considerable refinement over the well-known two-radii theorem of Berenstein–Zalcman. As one application, a description of the Pompeiu subsets of $X$ is given in terms of approximation of their indicator functions in $L(X)$.
Received: 17.07.2000 and 21.05.2001
Bibliographic databases:
UDC: 517.5
MSC: Primary 26B15, 43A85, 53C65; Secondary 53C35
Language: English
Original paper language: Russian
Citation: V. V. Volchkov, “Theorems on ball mean values in symmetric spaces”, Sb. Math., 192:9 (2001), 1275–1296
Citation in format AMSBIB
\Bibitem{Vol01}
\by V.~V.~Volchkov
\paper Theorems on ball mean values in symmetric spaces
\jour Sb. Math.
\yr 2001
\vol 192
\issue 9
\pages 1275--1296
\mathnet{http://mi.mathnet.ru/eng/sm593}
\crossref{https://doi.org/10.1070/SM2001v192n09ABEH000593}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1867008}
\zmath{https://zbmath.org/?q=an:1028.43011}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000173373400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035528285}
Linking options:
  • https://www.mathnet.ru/eng/sm593
  • https://doi.org/10.1070/SM2001v192n09ABEH000593
  • https://www.mathnet.ru/eng/sm/v192/i9/p17
  • This publication is cited in the following 13 articles:
    1. Volchkov V.V., Volchkov V.V., “A uniqueness theorem for the non-Euclidean Darboux equation”, Lobachevskii J. Math., 38:2, SI (2017), 379–385  crossref  mathscinet  zmath  isi  scopus
    2. V. V. Volchkov, Vit. V. Volchkov, “Behaviour at infinity of solutions of twisted convolution equations”, Izv. Math., 76:1 (2012), 79–93  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. O. A. Ochakovskaya, “Theorems on ball mean values for solutions of the Helmholtz equation on unbounded domains”, Izv. Math., 76:2 (2012), 365–374  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. Ochakovskaya O.A., “Spherical Mean Theorems for Solutions of the Helmholtz Equation”, Dokl. Math., 85:1 (2012), 60–62  crossref  mathscinet  zmath  isi  elib  scopus
    5. Ochakovskaya O.A., “On the Injectivity of the Pompeiu Transform for Integral Ball Means”, Ukrainian Math J, 63:3 (2011), 416–424  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    6. O. A. Ochakovskaya, “Precise characterizations of admissible rate of decrease of a non-trivial function with zero ball means”, Sb. Math., 199:1 (2008), 45–65  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    7. Ochakovskaya, OA, “MAJORANTS OF FUNCTIONS WITH VANISHING INTEGRALS OVER BALLS”, Ukrainian Mathematical Journal, 60:6 (2008), 1003  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    8. Volchkov, VV, “Convolution equations and the local Pompeiu property on symmetric spaces and on phase space associated to the Heisenberg group”, Journal D Analyse Mathematique, 105 (2008), 43  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    9. V. V. Volchkov, “Local two-radii theorem in symmetric spaces”, Sb. Math., 198:11 (2007), 1553–1577  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    10. Ochakovskaya, OA, “Liouville-type theorems for functions with zero integrals over balls of fixed radius”, Doklady Mathematics, 76:1 (2007), 530  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    11. Vit. V. Volchkov, “Functions with ball mean values equal to zero on compact two-point homogeneous spaces”, Sb. Math., 198:4 (2007), 465–490  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    12. Volchkov V.V., Volchkov V.V., “New results in integral geometry”, Complex Analysis and Dynamical Systems II, Contemporary Mathematics Series, 382, 2005, 417–432  crossref  mathscinet  zmath  isi
    13. Vit. V. Volchkov, “Local two radii theorem on the sphere”, St. Petersburg Math. J., 16:3 (2005), 453–475  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:585
    Russian version PDF:208
    English version PDF:37
    References:101
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025